Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synchronization tomography

28.01.2003


A new brain imaging method pioneered by a German research group from several institutions can now produce images that localize the areas of the brain involved when test subjects perform physical activities, and can show how portions of the brain interact with each other. The technique, dubbed synchronization tomography, involves mapping the fluctuating magnetic fields produced by tiny electrical currents in the brain, and determining which brain regions are synchronized with an activity - such as a test subject’s tapping finger. The researchers (Peter Tass, Institute of Medicine, Research Center, Juelich, p.tass@fz-juelich.de, 011+49-2461-61-2087) asked test subjects to tap their finger in time to a rhythmic tone, and to continue tapping at the same rate after the tone was switched off. Meanwhile, their brain activity was mapped with a magnetoencephalography (MEG) machine.



The maps showed that the same regions of the brain areas are active both as people tapped to a beat and as they paced the tapping themselves, but that the synchronization between the different brain areas changes dramatically. Other brain imaging methods, including functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), can also provide insight into which regions of the brain are involved during various activities, but they take too long to acquire images to disclose how the brain regions interact with each other, and therefore overlook important details of brain function which are clearly revealed with synchronization tomography. In addition, a related synchronization technique may help in the study of rapidly changing signals in the heart detected with magnetocardiography systems. (P. A. Tass et al., Physical Review Letters, upcoming article; text at www.aip.org/physnews/select )

Phil Shewe | Bulletin of Physics News

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>