Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synchronization tomography

28.01.2003


A new brain imaging method pioneered by a German research group from several institutions can now produce images that localize the areas of the brain involved when test subjects perform physical activities, and can show how portions of the brain interact with each other. The technique, dubbed synchronization tomography, involves mapping the fluctuating magnetic fields produced by tiny electrical currents in the brain, and determining which brain regions are synchronized with an activity - such as a test subject’s tapping finger. The researchers (Peter Tass, Institute of Medicine, Research Center, Juelich, p.tass@fz-juelich.de, 011+49-2461-61-2087) asked test subjects to tap their finger in time to a rhythmic tone, and to continue tapping at the same rate after the tone was switched off. Meanwhile, their brain activity was mapped with a magnetoencephalography (MEG) machine.



The maps showed that the same regions of the brain areas are active both as people tapped to a beat and as they paced the tapping themselves, but that the synchronization between the different brain areas changes dramatically. Other brain imaging methods, including functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), can also provide insight into which regions of the brain are involved during various activities, but they take too long to acquire images to disclose how the brain regions interact with each other, and therefore overlook important details of brain function which are clearly revealed with synchronization tomography. In addition, a related synchronization technique may help in the study of rapidly changing signals in the heart detected with magnetocardiography systems. (P. A. Tass et al., Physical Review Letters, upcoming article; text at www.aip.org/physnews/select )

Phil Shewe | Bulletin of Physics News

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>