Microparticles cause pre-eclampsia

Vessel wall cells and blood cells have been found to release cell particles which can damage blood vessels. This was demonstrated in laboratory experiments carried out by Marja van Wijk during her doctoral research at the University of Amsterdam. Poorly functioning blood vessels play a role in pre-eclampsia.

For her research (conducted at the Academic Medical Centre, University of Amsterdam) Van Wijk isolated blood vessels from pieces of tissue taken from pregnant women. She placed the blood vessels in a solution of microparticles isolated from the blood of pregnant women with and without pre-eclampsia. A so-called wire myograph was then used to measure the functioning of the blood vessels.

Vessels in a solution of ’affected’ microparticles were found to function less well than vessels with ’healthy’ particles. Which microparticles or parts thereof are responsible for the vessel damage is not clear. Exactly how the particles are formed must also be investigated.

Van Wijk’s research has also revealed that it is not just the inner lining of the vessel wall which functions inadequately during pre-eclampsia. The smooth muscle cells on the outside of the vessels also function less effectively. These muscle cells are responsible for the contraction of the vessels.

Van Wijk also investigated the effect of oestrogen on blood vessels. The administration of oestrogen to isolated vessels taken from women with pre-eclampsia, improved the functioning of the inner lining of the vessel walls. However, whether the administration of oestrogen can help to control pre-eclampsia is not yet clear.

Worldwide, pre-eclampsia is one of the most important causes of mortality of the mother and/or child during pregnancy. Blood from women with pre-eclampsia contains more microparticles from white blood cells than that of women without pre-eclampsia. These microparticles could originate, for example, from leucocytes which pass through an affected placenta. The microparticles can activate other cells, which in turn release particles, or directly disrupt the functioning of the blood vessels.

The research was partially funded by the Netherlands Organisation for Scientific Research (NWO).

Media Contact

Michel Philippens alfa

More Information:

http://www.nwo.nl

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Security vulnerability in browser interface

… allows computer access via graphics card. Researchers at Graz University of Technology were successful with three different side-channel attacks on graphics cards via the WebGPU browser interface. The attacks…

A closer look at mechanochemistry

Ferdi Schüth and his team at the Max Planck Institut für Kohlenforschung in Mülheim/Germany have been studying the phenomena of mechanochemistry for several years. But what actually happens at the…

Severe Vulnerabilities Discovered in Software to Protect Internet Routing

A research team from the National Research Center for Applied Cybersecurity ATHENE led by Prof. Dr. Haya Schulmann has uncovered 18 vulnerabilities in crucial software components of Resource Public Key…

Partners & Sponsors