Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microparticles cause pre-eclampsia

24.01.2003


Vessel wall cells and blood cells have been found to release cell particles which can damage blood vessels. This was demonstrated in laboratory experiments carried out by Marja van Wijk during her doctoral research at the University of Amsterdam. Poorly functioning blood vessels play a role in pre-eclampsia.



For her research (conducted at the Academic Medical Centre, University of Amsterdam) Van Wijk isolated blood vessels from pieces of tissue taken from pregnant women. She placed the blood vessels in a solution of microparticles isolated from the blood of pregnant women with and without pre-eclampsia. A so-called wire myograph was then used to measure the functioning of the blood vessels.

Vessels in a solution of ’affected’ microparticles were found to function less well than vessels with ’healthy’ particles. Which microparticles or parts thereof are responsible for the vessel damage is not clear. Exactly how the particles are formed must also be investigated.


Van Wijk’s research has also revealed that it is not just the inner lining of the vessel wall which functions inadequately during pre-eclampsia. The smooth muscle cells on the outside of the vessels also function less effectively. These muscle cells are responsible for the contraction of the vessels.

Van Wijk also investigated the effect of oestrogen on blood vessels. The administration of oestrogen to isolated vessels taken from women with pre-eclampsia, improved the functioning of the inner lining of the vessel walls. However, whether the administration of oestrogen can help to control pre-eclampsia is not yet clear.

Worldwide, pre-eclampsia is one of the most important causes of mortality of the mother and/or child during pregnancy. Blood from women with pre-eclampsia contains more microparticles from white blood cells than that of women without pre-eclampsia. These microparticles could originate, for example, from leucocytes which pass through an affected placenta. The microparticles can activate other cells, which in turn release particles, or directly disrupt the functioning of the blood vessels.

The research was partially funded by the Netherlands Organisation for Scientific Research (NWO).

Michel Philippens | alfa
Further information:
http://www.nwo.nl

More articles from Health and Medicine:

nachricht New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome
28.07.2017 | University of California - San Diego

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>