Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microparticles cause pre-eclampsia

24.01.2003


Vessel wall cells and blood cells have been found to release cell particles which can damage blood vessels. This was demonstrated in laboratory experiments carried out by Marja van Wijk during her doctoral research at the University of Amsterdam. Poorly functioning blood vessels play a role in pre-eclampsia.



For her research (conducted at the Academic Medical Centre, University of Amsterdam) Van Wijk isolated blood vessels from pieces of tissue taken from pregnant women. She placed the blood vessels in a solution of microparticles isolated from the blood of pregnant women with and without pre-eclampsia. A so-called wire myograph was then used to measure the functioning of the blood vessels.

Vessels in a solution of ’affected’ microparticles were found to function less well than vessels with ’healthy’ particles. Which microparticles or parts thereof are responsible for the vessel damage is not clear. Exactly how the particles are formed must also be investigated.


Van Wijk’s research has also revealed that it is not just the inner lining of the vessel wall which functions inadequately during pre-eclampsia. The smooth muscle cells on the outside of the vessels also function less effectively. These muscle cells are responsible for the contraction of the vessels.

Van Wijk also investigated the effect of oestrogen on blood vessels. The administration of oestrogen to isolated vessels taken from women with pre-eclampsia, improved the functioning of the inner lining of the vessel walls. However, whether the administration of oestrogen can help to control pre-eclampsia is not yet clear.

Worldwide, pre-eclampsia is one of the most important causes of mortality of the mother and/or child during pregnancy. Blood from women with pre-eclampsia contains more microparticles from white blood cells than that of women without pre-eclampsia. These microparticles could originate, for example, from leucocytes which pass through an affected placenta. The microparticles can activate other cells, which in turn release particles, or directly disrupt the functioning of the blood vessels.

The research was partially funded by the Netherlands Organisation for Scientific Research (NWO).

Michel Philippens | alfa
Further information:
http://www.nwo.nl

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>