Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Get Your Blood Moving: Increased Blood Flow Could Lead To Healthier Blood Vessels


Findings Show The Force of Blood Flow Has Anti-Inflammatory Effect

Scientists have found a new way in which exercise may protect against heart disease. Increased blood flow can mimic the powerful anti-inflammatory actions of certain glucocorticoid steroid drugs, according to researchers at the University of Pennsylvania’s Institute for Medicine and Engineering. The researchers discovered that an increase in shear stress - the drag force exerted by blood flowing over endothelial cells that line blood vessels - results in the same sort of anti-inflammatory events normally associated with high doses of steroids.

Their findings will be presented in the January 24th online edition of Circulation Research: Journal of the American Heart Association, followed by the print edition of the journal on February 21st.

"Inflammation in blood vessels has been linked to atherosclerosis, a hardening of the arteries, and here we see how the physical force of blood flow can cause cells to produce their own anti-inflammatory response," said Scott L. Diamond, PhD, director of the Penn’s Biotechnology Program and a professor of chemical and biomolecular engineering at Penn’s School of Engineering and Applied Science. "Conceivably, exercise provides the localized benefits of glucocorticoids - just as potent as high doses of steroids, yet without all the systemic side effects of taking the drugs themselves."

"Perhaps this is a natural way in which exercise helps protect the vessels, by stimulating an anti-inflammatory program when the vessels are exposed to elevated blood flow. We’re not talking about running a marathon here, we’re just talking about getting the blood moving at high arterial levels," said Diamond.

It is the first direct evidence that the mechanical effects of blood flow have anti-inflammatory properties. According to their findings, shear stress can activate glucocorticoid receptors (GR) to enter the nucleus of the cells, an event normally triggered by glucocorticoid steroids. Once inside the nucleus, the activated GR binds to the DNA to turn genes on and off.

Diamond and his colleagues studied the effect of shear stress on glucocorticoid receptors in endothelial cells grown in culture by recreating in the laboratory the flow environment of the large arteries. Sustained shear stress - in the form of a steady stream of liquid flowing across the cell culture - caused GRs to move into the cell nuclei where they triggered the transcription of a specially designed reporter gene. In fact, the effect of shear stress alone had the same effect as dexamethasone, a glucocorticoid steroid used to treat inflammation.

The researchers helped confirmed these findings in vivo by examining a portion of the human mammary artery and discovering that the blood flow had indeed caused GR to be localized in the nucleus of the endothelial cells. While the anti-inflammatory effects of exercise training has yet to be documented in vivo, Diamond believes the findings are applicable to living blood vessels.

"Think of blood flow as a stream: whenever a stream branches off you get small areas of recirculation eddies or pools of stagnant water. These same situations of disturbed flow irritate the endothelium. When blood vessels branch off, all the arterial flotsam - fats and activated blood cells - can clump and stick at these hot spots for atherosclerotic plaque formation," said Diamond. "Perhaps, elevated blood flow may alter these disease prone regions to relieve some of the localized inflammation."

The Institute for Medicine and Engineering was established jointly by Penn’s School of Medicine and Penn’s School of Engineering and Applied Science. Its focus is on interdisciplinary research and education fundamental to the application of advances in the treatment of disease.

Other Penn researchers involved in this study include Julie Y. Ji and Huiyan Jing of the Institute for Medicine and Engineering. Funding for this research comes from the National Institutes of Health.

Greg Lester | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>