Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Get Your Blood Moving: Increased Blood Flow Could Lead To Healthier Blood Vessels

24.01.2003


Findings Show The Force of Blood Flow Has Anti-Inflammatory Effect



Scientists have found a new way in which exercise may protect against heart disease. Increased blood flow can mimic the powerful anti-inflammatory actions of certain glucocorticoid steroid drugs, according to researchers at the University of Pennsylvania’s Institute for Medicine and Engineering. The researchers discovered that an increase in shear stress - the drag force exerted by blood flowing over endothelial cells that line blood vessels - results in the same sort of anti-inflammatory events normally associated with high doses of steroids.

Their findings will be presented in the January 24th online edition of Circulation Research: Journal of the American Heart Association, followed by the print edition of the journal on February 21st.


"Inflammation in blood vessels has been linked to atherosclerosis, a hardening of the arteries, and here we see how the physical force of blood flow can cause cells to produce their own anti-inflammatory response," said Scott L. Diamond, PhD, director of the Penn’s Biotechnology Program and a professor of chemical and biomolecular engineering at Penn’s School of Engineering and Applied Science. "Conceivably, exercise provides the localized benefits of glucocorticoids - just as potent as high doses of steroids, yet without all the systemic side effects of taking the drugs themselves."

"Perhaps this is a natural way in which exercise helps protect the vessels, by stimulating an anti-inflammatory program when the vessels are exposed to elevated blood flow. We’re not talking about running a marathon here, we’re just talking about getting the blood moving at high arterial levels," said Diamond.

It is the first direct evidence that the mechanical effects of blood flow have anti-inflammatory properties. According to their findings, shear stress can activate glucocorticoid receptors (GR) to enter the nucleus of the cells, an event normally triggered by glucocorticoid steroids. Once inside the nucleus, the activated GR binds to the DNA to turn genes on and off.

Diamond and his colleagues studied the effect of shear stress on glucocorticoid receptors in endothelial cells grown in culture by recreating in the laboratory the flow environment of the large arteries. Sustained shear stress - in the form of a steady stream of liquid flowing across the cell culture - caused GRs to move into the cell nuclei where they triggered the transcription of a specially designed reporter gene. In fact, the effect of shear stress alone had the same effect as dexamethasone, a glucocorticoid steroid used to treat inflammation.

The researchers helped confirmed these findings in vivo by examining a portion of the human mammary artery and discovering that the blood flow had indeed caused GR to be localized in the nucleus of the endothelial cells. While the anti-inflammatory effects of exercise training has yet to be documented in vivo, Diamond believes the findings are applicable to living blood vessels.

"Think of blood flow as a stream: whenever a stream branches off you get small areas of recirculation eddies or pools of stagnant water. These same situations of disturbed flow irritate the endothelium. When blood vessels branch off, all the arterial flotsam - fats and activated blood cells - can clump and stick at these hot spots for atherosclerotic plaque formation," said Diamond. "Perhaps, elevated blood flow may alter these disease prone regions to relieve some of the localized inflammation."

The Institute for Medicine and Engineering was established jointly by Penn’s School of Medicine and Penn’s School of Engineering and Applied Science. Its focus is on interdisciplinary research and education fundamental to the application of advances in the treatment of disease.

Other Penn researchers involved in this study include Julie Y. Ji and Huiyan Jing of the Institute for Medicine and Engineering. Funding for this research comes from the National Institutes of Health.

Greg Lester | EurekAlert!
Further information:
http://health.upenn.edu/News/News_Releases/jan03/Shear_Stress.html
http://www.med.upenn.edu/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>