Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Get Your Blood Moving: Increased Blood Flow Could Lead To Healthier Blood Vessels

24.01.2003


Findings Show The Force of Blood Flow Has Anti-Inflammatory Effect



Scientists have found a new way in which exercise may protect against heart disease. Increased blood flow can mimic the powerful anti-inflammatory actions of certain glucocorticoid steroid drugs, according to researchers at the University of Pennsylvania’s Institute for Medicine and Engineering. The researchers discovered that an increase in shear stress - the drag force exerted by blood flowing over endothelial cells that line blood vessels - results in the same sort of anti-inflammatory events normally associated with high doses of steroids.

Their findings will be presented in the January 24th online edition of Circulation Research: Journal of the American Heart Association, followed by the print edition of the journal on February 21st.


"Inflammation in blood vessels has been linked to atherosclerosis, a hardening of the arteries, and here we see how the physical force of blood flow can cause cells to produce their own anti-inflammatory response," said Scott L. Diamond, PhD, director of the Penn’s Biotechnology Program and a professor of chemical and biomolecular engineering at Penn’s School of Engineering and Applied Science. "Conceivably, exercise provides the localized benefits of glucocorticoids - just as potent as high doses of steroids, yet without all the systemic side effects of taking the drugs themselves."

"Perhaps this is a natural way in which exercise helps protect the vessels, by stimulating an anti-inflammatory program when the vessels are exposed to elevated blood flow. We’re not talking about running a marathon here, we’re just talking about getting the blood moving at high arterial levels," said Diamond.

It is the first direct evidence that the mechanical effects of blood flow have anti-inflammatory properties. According to their findings, shear stress can activate glucocorticoid receptors (GR) to enter the nucleus of the cells, an event normally triggered by glucocorticoid steroids. Once inside the nucleus, the activated GR binds to the DNA to turn genes on and off.

Diamond and his colleagues studied the effect of shear stress on glucocorticoid receptors in endothelial cells grown in culture by recreating in the laboratory the flow environment of the large arteries. Sustained shear stress - in the form of a steady stream of liquid flowing across the cell culture - caused GRs to move into the cell nuclei where they triggered the transcription of a specially designed reporter gene. In fact, the effect of shear stress alone had the same effect as dexamethasone, a glucocorticoid steroid used to treat inflammation.

The researchers helped confirmed these findings in vivo by examining a portion of the human mammary artery and discovering that the blood flow had indeed caused GR to be localized in the nucleus of the endothelial cells. While the anti-inflammatory effects of exercise training has yet to be documented in vivo, Diamond believes the findings are applicable to living blood vessels.

"Think of blood flow as a stream: whenever a stream branches off you get small areas of recirculation eddies or pools of stagnant water. These same situations of disturbed flow irritate the endothelium. When blood vessels branch off, all the arterial flotsam - fats and activated blood cells - can clump and stick at these hot spots for atherosclerotic plaque formation," said Diamond. "Perhaps, elevated blood flow may alter these disease prone regions to relieve some of the localized inflammation."

The Institute for Medicine and Engineering was established jointly by Penn’s School of Medicine and Penn’s School of Engineering and Applied Science. Its focus is on interdisciplinary research and education fundamental to the application of advances in the treatment of disease.

Other Penn researchers involved in this study include Julie Y. Ji and Huiyan Jing of the Institute for Medicine and Engineering. Funding for this research comes from the National Institutes of Health.

Greg Lester | EurekAlert!
Further information:
http://health.upenn.edu/News/News_Releases/jan03/Shear_Stress.html
http://www.med.upenn.edu/

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>