Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

atugen AG Discovers Novel Cancer Target

21.01.2003


atugen AG, a private company focused on the elucidation of disease pathways, today announced the identification of a novel cancer target that appears to play an important role in tumor growth and metastasis. atugen’s research group has demonstrated that inhibition of the novel target, Atu027, which has homology to protein kinases, results in blockage of tumor growth of human prostate carcinoma cells in orthotopic mouse models. atugen has demonstrated that human prostate tumor cells engineered to express siRNA molecules against the kinase shows significant reduction or even complete lack of secondary tumors indicating a role of the kinase in tumor progression and metastasis.



The novel target, Atu027, is the result of the company’s internal research program on the phosphatidylinositol 3-OH kinase (PI 3-K) pathway. The approach was presented at the Cold Spring Harbor Laboratory’s Tumor Suppressor August 2002 Meeting in Cold Spring Harbor, NY. PI 3-K is a central signal transduction molecule controlling a wide range of cellular responses including contributing to increased malignant behavior of cancer cells.

The identification and functional validation of the kinase as PI 3-K downstream effector molecule underscores the strength of the atugen approach to find novel targets. The use of the company’s proprietary mRNA knockdown technologies (GeneBlocs® antisense molecules, improved synthetic siRNA, vector expression systems for siRNA, ribozymes and superior transfection reagents) together with atugen’s expertise in gene function elucidation has to date resulted in 19 functionally validated cancer targets that act in the PI 3-K pathway.


“We are in the process of out-licensing this novel kinase target to partners,” said Dr. Klaus Giese, atugen’s Chief Scientific Officer and Vice President of Research. “The breakthrough in this complex pathway endorses our approach, which aims at providing our partners and in-house projects with the best targets for therapeutic intervention within a given disease cascade. We have already started to dissect a complementary pathway, the TGF-beta/Smad pathway.”

Caroline Stupnicka | alfa
Further information:
http://www.atugen.de

More articles from Health and Medicine:

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Injecting gene cocktail into mouse pancreas leads to humanlike tumors
06.04.2018 | University of Texas Health Science Center at San Antonio

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>