Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

atugen AG Discovers Novel Cancer Target

21.01.2003


atugen AG, a private company focused on the elucidation of disease pathways, today announced the identification of a novel cancer target that appears to play an important role in tumor growth and metastasis. atugen’s research group has demonstrated that inhibition of the novel target, Atu027, which has homology to protein kinases, results in blockage of tumor growth of human prostate carcinoma cells in orthotopic mouse models. atugen has demonstrated that human prostate tumor cells engineered to express siRNA molecules against the kinase shows significant reduction or even complete lack of secondary tumors indicating a role of the kinase in tumor progression and metastasis.



The novel target, Atu027, is the result of the company’s internal research program on the phosphatidylinositol 3-OH kinase (PI 3-K) pathway. The approach was presented at the Cold Spring Harbor Laboratory’s Tumor Suppressor August 2002 Meeting in Cold Spring Harbor, NY. PI 3-K is a central signal transduction molecule controlling a wide range of cellular responses including contributing to increased malignant behavior of cancer cells.

The identification and functional validation of the kinase as PI 3-K downstream effector molecule underscores the strength of the atugen approach to find novel targets. The use of the company’s proprietary mRNA knockdown technologies (GeneBlocs® antisense molecules, improved synthetic siRNA, vector expression systems for siRNA, ribozymes and superior transfection reagents) together with atugen’s expertise in gene function elucidation has to date resulted in 19 functionally validated cancer targets that act in the PI 3-K pathway.


“We are in the process of out-licensing this novel kinase target to partners,” said Dr. Klaus Giese, atugen’s Chief Scientific Officer and Vice President of Research. “The breakthrough in this complex pathway endorses our approach, which aims at providing our partners and in-house projects with the best targets for therapeutic intervention within a given disease cascade. We have already started to dissect a complementary pathway, the TGF-beta/Smad pathway.”

Caroline Stupnicka | alfa
Further information:
http://www.atugen.de

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>