Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse model links alcohol intake to marijuana-like brain compounds

21.01.2003


New pathway presents target for medication development



Brain molecules similar to the active compound in marijuana help to regulate alcohol consumption, according to new reports by scientists at the National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, Maryland, and a separate NIAAA-supported group at several New York state research institutions.

In studies conducted with a strain of mice known to have a high preference for alcohol, the scientists found greatly reduced alcohol intake in mice specially bred to lack CB1, the brain receptor for innate marijuana-like substances known as endocannabinoids. The effect was age dependent, the Bethesda group found. The New York scientists showed that the endocannabinoid system activates a brain region known as the nucleus accumbens, which plays a major role in mediating the rewarding effects of alcohol. Both groups had shown that alcohol intake among normal mice of the same alcohol-preferring strain could be reduced by treating the animals with a drug that blocks CB1 receptors in the brain.


The new reports appear in the early online versions of the Proceedings of the National Academy of Sciences, Volume 20, Number 3, at www.pnas.org and the Journal of Neurochemistry, Volume 24, Number 4, at www.blackwell-synergy.com/servlet/useragent?func=showIssues&code=jnc in the week beginning January 20, 2003 (specific dates to be determined).

"These are important findings," notes NIAAA Director Ting-Kai Li, M.D. "Implicating yet another neurochemical mechanism in alcohol consumption opens another potential avenue for the development of new pharmacologic agents to prevent and treat alcohol problems."

The brain’s multiple communication pathways employ a wide variety of signaling molecules known as neurotransmitters to relay messages from one brain cell to another. Researchers have found that alcohol affects numerous neurotransmitters and that a variety of brain pathways are involved in alcohol abuse and dependence. Determining precisely how alcohol interacts with brain cells and affects brain chemistry is an ongoing focus of research. Knowledge gained through this research helps scientists develop drugs to diminish the desire to consume alcohol and to counteract alcohol’s effects.

Since their discovery in the early 1990’s, endocannabinoids and endocannabinoid receptors have been studied intensely by alcohol and drug abuse researchers. Recent animal studies have suggested that the so-called "endocannabinoid system" is involved in some of the pharmacologic effects of alcohol and in drinking behavior.

In one of the current studies, researchers led by George Kunos, M.D., Ph.D., Scientific Director of NIAAA’s Division of Intramural Biological and Clinical Research, found that, among the normal, alcohol-preferring mice–that is, those with intact CB1 receptors–the animals’ appetite for both alcohol and food decreased with age. This occurred even though levels of endocannabinoids and the density of CB1 receptors were found to be similar in the brains of young and old mice.

"Although unexpected," says Dr. Kunos, "the observed age-dependent decline in alcohol preference in mice parallels observations in humans, in that only some teenage binge drinkers become alcoholics as adults, and that the onset of alcoholism declines with age."

The researchers found a possible explanation for this phenomenon by comparing the efficiency of the signal sent by the CB1 receptors in different regions of the brain in young and old mice. In old mice, they found diminished CB1 signaling in an area known as the limbic forebrain. The part of the limbic forebrain known as the nucleus accumbens plays a major role in mediating the rewarding properties of alcohol and cannabinoids and also is thought to help regulate appetite. The nucleus accumbens exerts its effects through the release of the neurotransmitter dopamine. Alcohol ingestion typically elicits a robust release of dopamine from the nucleus accumbens.

The second report by NIAAA-supported scientists led by Basalingappa L. Hungund, Ph.D., of the New York State Psychiatric Institute and Nathan S. Kline Institute for Psychiatric Research in Orangeburg, New York, complements the findings of the Kunos research team. Dr. Hungund and colleagues found that, in addition to showing a dramatic reduction in alcohol intake, alcohol-preferring mice that lack CB1 receptors release no dopamine from the nucleus accumbens after they drink alcohol. In mice with intact CB1 receptors, the researchers were able to abolish alcohol-induced release of dopamine from the nucleus accumbens by treating the animals with a drug that blocks CB1 receptors.

"Our results," says coauthor Balapal Basavarajappa, Ph.D., "clearly suggest that the CB1 receptor system is involved in ethanol-induced dopamine release in the nucleus accumbens and indicate that activation of the limbic dopamine system is required for the reinforcing effects of alcohol. They further suggest an interaction between the cannabinoidergic and dopaminergic systems in the reinforcing properties of drugs of abuse, including alcohol."

"Taken together," adds Dr. Kunos, "these findings provide unequivocal evidence for the role of endocannabinoids and CB1 in alcohol drinking behavior in rodents, and suggest that the CB1 receptor may be a promising pharmacotherapy target."


For interviews with Dr. Kunos, please telephone the NIAAA Press Office at 301/443-0595. For an interview with Dr. Hungund, please telephone 845/398-5452 after January 20. Coauthor Balapal Basavarajappa, Ph.D., is available to discuss the Journal of Neurochemistry article at 845/398-5454. For additional information about alcohol research, please visit www.niaaa.nih.gov.

The National Institute on Alcohol Abuse and Alcoholism, a component of the National Institutes of Health, U.S. Department of Health and Human Services, conducts and supports approximately 90 percent of U.S. research on the causes, consequences, prevention, and treatment of alcohol abuse, alcoholism, and alcohol problems. NIAAA disseminates research findings to scientists, practitioners, policy makers, and the general public.

Ann Bradley | EurekAlert!
Further information:
http://www.niaaa.nih.gov/
http://www.pnas.org
http://www.blackwell-synergy.com/servlet/useragent?func=showIssues&code=jnc

More articles from Health and Medicine:

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

nachricht Alzheimer’s: Cellular Mechanism Provides Explanation Model for Declining Memory Performance
21.09.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>