Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation helps drugs ’zero in’ on tumor blood vessels

21.01.2003


Technique used to shrink tumors, delay their growth



A team of Vanderbilt-Ingram Cancer Center scientists shrunk tumors or delayed their growth in animal studies by using radiation to enable a drug to "zero in" and block the tumor blood vessels.

The work, reported in the January issue of the journal Cancer Cell, is a model for what might be achieved in patients by using radiation to activate drug targets in tumors. "We can now use combinations of chemotherapy and radiation to improve the anti-cancer effect for many of our patients, but the side effects can be great," said Dr. Dennis Hallahan, chair of Radiation Oncology at Vanderbilt- Ingram. "With this approach, we hope we can ultimately deliver drugs directly and selectively to the tumor alone, and reduce side effects."


This paper describes work by investigators in Vanderbilt’s departments of Radiation Oncology, Radiology, Biochemical Engineering and Cancer Biology to identify receptors in tumor blood vessels that are activated by radiation and then to demonstrate that these receptors can be selectively targeted.

To identify the radiation-induced targets, the scientists treated tumor- bearing animals with radiation and then injected them with a peptide library. The peptides (portions of proteins) that correspond to the radiation-induced receptors bind, or stick, and can then be recovered. By identifying which peptides stick to radiation-treated tumor cells compared to untreated cells, the scientists can identify what receptors are activated by radiation.

A particular protein portion, the amino acid sequence RGDGSSV, was recovered from several tumor models and was found to bind within the tumor blood vessels. It was found to bind to two types of fibrinogen receptors that are important to angiogenesis, the development of blood vessels. Tumor blood vessels are an attractive therapeutic target because tumor cells depend on the blood vessels for vital oxygen and nutrients necessary for their growth and spread.

The scientists then coated liposomes (fatty molecules that can be used to deliver drugs) with an antibody that binds to these fibrinogen receptors. These liposomes were tagged with a fluorescent marker so they could be tracked in the body and were injected into mice with tumors on both hind legs. The right tumors were treated with radiation, while the left tumors were left untreated as controls. The fluorescent marker, indicating the presence of the antibody-coated liposomes, was seen in the treated tumors but not in the untreated tumors. The finding suggests that anti-cancer drugs might be attached to these antibody-coated liposomes and targeted specifically to tumors.

The scientists next tested whether they could affect tumor growth by targeting these radiation-induced receptors with nanoparticles designed to obstruct the blood flow within the vessels. They compared effects of radiation combined with nanoparticles coated with the fibrinogen antibody versus radiation alone and radiation combined with uncoated nanoparticles.

Sonographic measurement of microscopic blood flow found that radiation alone or used with uncoated nanoparticles achieved virtually no change in tumor blood flow. However, blood flow was reduced by 85 percent in tumors treated with coated nanoparticles and radiation.

In addition, tumor growth was significantly delayed in tumors treated with radiation and coated nanoparticles, compared to those treated with uncoated nanoparticles or radiation alone.

Hallahan and his colleagues have begun pilot studies in cancer patients to test the feasibility of this approach. Current trials are designed to demonstrate that radiation can activate receptors in these patients that can then be targeted with the antibodies. Among the factors being explored are whether the type of radiation -- traditional external radiation, internally delivered radiation (brachytherapy) or stereotactically delivered radiation -- makes a difference in the ability to target therapy.

Hallahan estimates that clinical trials using this approach to test treatments are still several years away.


In addition to Hallahan, authors on the paper were Ling Geng, Shimian Qu, Christopher Scarfone, Todd Giorgio, Edwin Donnelly, Xiang Gao and Jeff Clanton.

The work was funded by the National Institutes of Health, including support from Vanderbilt-Ingram’s SPORE (Specialized Program Of Research Excellence) in Lung Cancer grant from the National Cancer Institute; the American Society for Therapeutic Radiation Oncology; and Vanderbilt’s department of Radiation Oncology.

Cynthia Manley | EurekAlert!
Further information:
http://www.mc.vanderbilt.edu/reporter/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>