Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation helps drugs ’zero in’ on tumor blood vessels

21.01.2003


Technique used to shrink tumors, delay their growth



A team of Vanderbilt-Ingram Cancer Center scientists shrunk tumors or delayed their growth in animal studies by using radiation to enable a drug to "zero in" and block the tumor blood vessels.

The work, reported in the January issue of the journal Cancer Cell, is a model for what might be achieved in patients by using radiation to activate drug targets in tumors. "We can now use combinations of chemotherapy and radiation to improve the anti-cancer effect for many of our patients, but the side effects can be great," said Dr. Dennis Hallahan, chair of Radiation Oncology at Vanderbilt- Ingram. "With this approach, we hope we can ultimately deliver drugs directly and selectively to the tumor alone, and reduce side effects."


This paper describes work by investigators in Vanderbilt’s departments of Radiation Oncology, Radiology, Biochemical Engineering and Cancer Biology to identify receptors in tumor blood vessels that are activated by radiation and then to demonstrate that these receptors can be selectively targeted.

To identify the radiation-induced targets, the scientists treated tumor- bearing animals with radiation and then injected them with a peptide library. The peptides (portions of proteins) that correspond to the radiation-induced receptors bind, or stick, and can then be recovered. By identifying which peptides stick to radiation-treated tumor cells compared to untreated cells, the scientists can identify what receptors are activated by radiation.

A particular protein portion, the amino acid sequence RGDGSSV, was recovered from several tumor models and was found to bind within the tumor blood vessels. It was found to bind to two types of fibrinogen receptors that are important to angiogenesis, the development of blood vessels. Tumor blood vessels are an attractive therapeutic target because tumor cells depend on the blood vessels for vital oxygen and nutrients necessary for their growth and spread.

The scientists then coated liposomes (fatty molecules that can be used to deliver drugs) with an antibody that binds to these fibrinogen receptors. These liposomes were tagged with a fluorescent marker so they could be tracked in the body and were injected into mice with tumors on both hind legs. The right tumors were treated with radiation, while the left tumors were left untreated as controls. The fluorescent marker, indicating the presence of the antibody-coated liposomes, was seen in the treated tumors but not in the untreated tumors. The finding suggests that anti-cancer drugs might be attached to these antibody-coated liposomes and targeted specifically to tumors.

The scientists next tested whether they could affect tumor growth by targeting these radiation-induced receptors with nanoparticles designed to obstruct the blood flow within the vessels. They compared effects of radiation combined with nanoparticles coated with the fibrinogen antibody versus radiation alone and radiation combined with uncoated nanoparticles.

Sonographic measurement of microscopic blood flow found that radiation alone or used with uncoated nanoparticles achieved virtually no change in tumor blood flow. However, blood flow was reduced by 85 percent in tumors treated with coated nanoparticles and radiation.

In addition, tumor growth was significantly delayed in tumors treated with radiation and coated nanoparticles, compared to those treated with uncoated nanoparticles or radiation alone.

Hallahan and his colleagues have begun pilot studies in cancer patients to test the feasibility of this approach. Current trials are designed to demonstrate that radiation can activate receptors in these patients that can then be targeted with the antibodies. Among the factors being explored are whether the type of radiation -- traditional external radiation, internally delivered radiation (brachytherapy) or stereotactically delivered radiation -- makes a difference in the ability to target therapy.

Hallahan estimates that clinical trials using this approach to test treatments are still several years away.


In addition to Hallahan, authors on the paper were Ling Geng, Shimian Qu, Christopher Scarfone, Todd Giorgio, Edwin Donnelly, Xiang Gao and Jeff Clanton.

The work was funded by the National Institutes of Health, including support from Vanderbilt-Ingram’s SPORE (Specialized Program Of Research Excellence) in Lung Cancer grant from the National Cancer Institute; the American Society for Therapeutic Radiation Oncology; and Vanderbilt’s department of Radiation Oncology.

Cynthia Manley | EurekAlert!
Further information:
http://www.mc.vanderbilt.edu/reporter/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>