Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saint Louis University researchers make breakthrough towards solving the cause of cancer development

17.01.2003


Results appear January 17 in the journal Molecular Cell



A lab headed by a Saint Louis University researcher has made a major breakthrough that could lead to a better molecular understanding of cancer.

Results published today in the Journal Molecular Cell by Ali Shilatifard, Ph.D., and colleagues show for the first time how a protein known to be involved in the development of cancer functions in normal cells.


The research shows how the protein "Bre1" plays a pivotal role in determining how the protein "Rad6" functions in modification of chromosomal DNA. Also participating in this research was the lab of Dr. Mark Johnston at Washington University School of Medicine.

Dr. Shilatifard, an associate professor of biochemistry and molecular biology at Saint Louis University School of Medicine, said this discovery should lead to several new promising areas of inquiry.

"This opens the door for further study of this protein in the regulation of gene expression," he said. "Once we understand the normal, we will have a better understanding of where something is going wrong."

This, in turn, could lead to ways to block the pathway and ultimately could stop cancer development, Dr. Shilatifard said.

"You can look at a cancer cell as a runaway freight train. There may be a thousand ways to stop it. You can derail it, take all the screws from its wheels or stop giving it fuel. This is one strategy for stopping it."

"Hopefully, together with other researchers, we can come up with a very strong way of stopping the train," he said.


Saint Louis University is a Jesuit, Catholic university ranked among the top research institutions in the nation. The University fosters the intellectual and character development of 11,000 students on campuses in St. Louis and Madrid, Spain. Founded in 1818, it is the oldest university west of the Mississippi and the second oldest Jesuit university in the United States. Through teaching, research, healthcare and community service, Saint Louis University is the place where knowledge touches lives. Learn more about SLU at www.slu.edu.

Matt Shaw | EurekAlert!
Further information:
http://www.slu.edu/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>