Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough gives spinal injury sufferers a standing start

16.01.2003


For the first time, engineers have enabled paralysed people to stand up and balance for significant periods without holding an external support. This is an important breakthrough in helping individuals with spinal cord injuries to start standing again for useful lengths of time – up to seven minutes have been achieved in experiments.



The cutting-edge research project that achieved this advance was carried out by the Department of Mechanical Engineering at the University of Glasgow with funding from the Swindon based Engineering and Physical Sciences Research Council

The project focused on the development and evaluation of techniques that use low levels of pulsed electrical current to stimulate the nerves that control muscle movement. The current replaces signals from the brain, which do not reach the nerves on account of the spinal cord injury. This electrical stimulation makes the paralysed muscle contract and partially restores lost body functions.


The initiative has built on earlier work by the same research team – an acknowledged leader in the field and the first to demonstrate, in practice, unsupported standing for paraplegics. The challenge was to allow spinally-injured people to stand in a stable fashion for significant periods of time, without having to hold on to a frame or walker. The team has achieved this by stimulating the muscles controlling the ankle by an amount directly related to the person’s standing posture. For example, if the person leans further forward, the stimulation is automatically increased to push them back to a more upright position. This approach is known as feedback control.

The team is led by Professor Ken Hunt, Head of the University’s Centre for Rehabilitation Engineering. The research was carried out in close collaboration with the Queen Elizabeth National Spinal Injuries Unit at Glasgow’s Southern General Hospital. Professor Hunt says: “Enabling spinally-injured people to stand again and remain balanced for this amount of time represents major progress. This has never been achieved before in experiments with human subjects”.

Jane Reck | EurekAlert!
Further information:
http://fesnet.eng.gla.ac.uk/CRE

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>