Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early diagnosis of childhood diabetes

16.01.2003


Diabetes is a chronic metabolic disorder that afflicts 17 million people in the United States and is the fourth leading cause of death. Over 2 million patients suffer from its most severe form - childhood diabetes – also known as Type 1, juvenile or insulin-dependent diabetes. We now understand that childhood diabetes is an autoimmune illness, where the body’s own white blood cells, which normally fight infection, turn and act against the body. These white blood cells target a specific group of cells in the pancreas – beta cells – that produce insulin, the hormone necessary to convert food into energy. Over time, such a large number of beta cells are destroyed that there is a lack of insulin and diabetes develops.



Scientists have long sought a means to predict the onset of diabetes through routine blood tests of destructive white blood cells so that high-risk individuals could be treated before all their beta cells are destroyed and they become diabetic. Progress has been so limited however, that it has been debated whether these cells were present in the blood at levels high enough to facilitate direct detection.

In the January 15 issue of the Journal of Clinical Investigation, Rusung Tan and colleagues at British Columbia’s Children’s Hospital, Canada, reveal a method for directly measuring the level of these self-destructive cells in the blood of mice and demonstrate that these levels reliably distinguish mice that go on to develop diabetes from those that do not.


Drs. George Eisenbarth and Brian Kotzin from the Barbara Davis Diabetes Center for Childhood Diabetes and the University of Colorado Health Sciences Center state in their accompanying commentary that "quantifying (these) cells in patients genetically at high risk to develop disease and in patients with prediabetes may be a more direct (and at least complementary) approach to detect beta cell autoimmunity and predict which patients will go on to develop disease". The researchers suggest that this technique may also be used to detect this group of self-destructive cells involved in other autoimmune disorders, thereby increasing our powers of predicting disease.


###
CONTACT:
Rusung Tan
Department of Pathology and Laboratory Medicine
British Columbia’s Children’s Hospital
4480 Oak Street
Vancouver
British Columbia
CANADA V6H 3V4
Phone: (604) 875-3605
Fax: (604) 875-3777
E-mail: roo@interchange.ubc.ca

View the PDF of this article at: https://www.the-jci.org/press/16409.pdf

ACCOMPANYING COMMENTARY: Enumerating autoreactive T cells in peripheral blood: a big step in diabetes prediction.

CONTACT:
George S. Eisenbarth
Barbara Davis Center for Childhood Diabetes
Box B140
4200 East Ninth Avenue
Denver, CO 80262
USA
Phone: (303) 315-4891
Fax: (303) 315-4892
E-mail: george.eisenbarth@uchsc.edu

View the PDF of this commentary at: https://www.the-jci.org/press/17621.pdf


Brooke Grindlinger, PhD | EurekAlert!
Further information:
http://www.jci.org/
http://www.the-jci.org/press/16409.
http://www.the-jci.org/press/17621.pdf

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>