Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early diagnosis of childhood diabetes

16.01.2003


Diabetes is a chronic metabolic disorder that afflicts 17 million people in the United States and is the fourth leading cause of death. Over 2 million patients suffer from its most severe form - childhood diabetes – also known as Type 1, juvenile or insulin-dependent diabetes. We now understand that childhood diabetes is an autoimmune illness, where the body’s own white blood cells, which normally fight infection, turn and act against the body. These white blood cells target a specific group of cells in the pancreas – beta cells – that produce insulin, the hormone necessary to convert food into energy. Over time, such a large number of beta cells are destroyed that there is a lack of insulin and diabetes develops.



Scientists have long sought a means to predict the onset of diabetes through routine blood tests of destructive white blood cells so that high-risk individuals could be treated before all their beta cells are destroyed and they become diabetic. Progress has been so limited however, that it has been debated whether these cells were present in the blood at levels high enough to facilitate direct detection.

In the January 15 issue of the Journal of Clinical Investigation, Rusung Tan and colleagues at British Columbia’s Children’s Hospital, Canada, reveal a method for directly measuring the level of these self-destructive cells in the blood of mice and demonstrate that these levels reliably distinguish mice that go on to develop diabetes from those that do not.


Drs. George Eisenbarth and Brian Kotzin from the Barbara Davis Diabetes Center for Childhood Diabetes and the University of Colorado Health Sciences Center state in their accompanying commentary that "quantifying (these) cells in patients genetically at high risk to develop disease and in patients with prediabetes may be a more direct (and at least complementary) approach to detect beta cell autoimmunity and predict which patients will go on to develop disease". The researchers suggest that this technique may also be used to detect this group of self-destructive cells involved in other autoimmune disorders, thereby increasing our powers of predicting disease.


###
CONTACT:
Rusung Tan
Department of Pathology and Laboratory Medicine
British Columbia’s Children’s Hospital
4480 Oak Street
Vancouver
British Columbia
CANADA V6H 3V4
Phone: (604) 875-3605
Fax: (604) 875-3777
E-mail: roo@interchange.ubc.ca

View the PDF of this article at: https://www.the-jci.org/press/16409.pdf

ACCOMPANYING COMMENTARY: Enumerating autoreactive T cells in peripheral blood: a big step in diabetes prediction.

CONTACT:
George S. Eisenbarth
Barbara Davis Center for Childhood Diabetes
Box B140
4200 East Ninth Avenue
Denver, CO 80262
USA
Phone: (303) 315-4891
Fax: (303) 315-4892
E-mail: george.eisenbarth@uchsc.edu

View the PDF of this commentary at: https://www.the-jci.org/press/17621.pdf


Brooke Grindlinger, PhD | EurekAlert!
Further information:
http://www.jci.org/
http://www.the-jci.org/press/16409.
http://www.the-jci.org/press/17621.pdf

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>