Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Early diagnosis of childhood diabetes


Diabetes is a chronic metabolic disorder that afflicts 17 million people in the United States and is the fourth leading cause of death. Over 2 million patients suffer from its most severe form - childhood diabetes – also known as Type 1, juvenile or insulin-dependent diabetes. We now understand that childhood diabetes is an autoimmune illness, where the body’s own white blood cells, which normally fight infection, turn and act against the body. These white blood cells target a specific group of cells in the pancreas – beta cells – that produce insulin, the hormone necessary to convert food into energy. Over time, such a large number of beta cells are destroyed that there is a lack of insulin and diabetes develops.

Scientists have long sought a means to predict the onset of diabetes through routine blood tests of destructive white blood cells so that high-risk individuals could be treated before all their beta cells are destroyed and they become diabetic. Progress has been so limited however, that it has been debated whether these cells were present in the blood at levels high enough to facilitate direct detection.

In the January 15 issue of the Journal of Clinical Investigation, Rusung Tan and colleagues at British Columbia’s Children’s Hospital, Canada, reveal a method for directly measuring the level of these self-destructive cells in the blood of mice and demonstrate that these levels reliably distinguish mice that go on to develop diabetes from those that do not.

Drs. George Eisenbarth and Brian Kotzin from the Barbara Davis Diabetes Center for Childhood Diabetes and the University of Colorado Health Sciences Center state in their accompanying commentary that "quantifying (these) cells in patients genetically at high risk to develop disease and in patients with prediabetes may be a more direct (and at least complementary) approach to detect beta cell autoimmunity and predict which patients will go on to develop disease". The researchers suggest that this technique may also be used to detect this group of self-destructive cells involved in other autoimmune disorders, thereby increasing our powers of predicting disease.

Rusung Tan
Department of Pathology and Laboratory Medicine
British Columbia’s Children’s Hospital
4480 Oak Street
British Columbia
Phone: (604) 875-3605
Fax: (604) 875-3777

View the PDF of this article at:

ACCOMPANYING COMMENTARY: Enumerating autoreactive T cells in peripheral blood: a big step in diabetes prediction.

George S. Eisenbarth
Barbara Davis Center for Childhood Diabetes
Box B140
4200 East Ninth Avenue
Denver, CO 80262
Phone: (303) 315-4891
Fax: (303) 315-4892

View the PDF of this commentary at:

Brooke Grindlinger, PhD | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>