Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early diagnosis of childhood diabetes

16.01.2003


Diabetes is a chronic metabolic disorder that afflicts 17 million people in the United States and is the fourth leading cause of death. Over 2 million patients suffer from its most severe form - childhood diabetes – also known as Type 1, juvenile or insulin-dependent diabetes. We now understand that childhood diabetes is an autoimmune illness, where the body’s own white blood cells, which normally fight infection, turn and act against the body. These white blood cells target a specific group of cells in the pancreas – beta cells – that produce insulin, the hormone necessary to convert food into energy. Over time, such a large number of beta cells are destroyed that there is a lack of insulin and diabetes develops.



Scientists have long sought a means to predict the onset of diabetes through routine blood tests of destructive white blood cells so that high-risk individuals could be treated before all their beta cells are destroyed and they become diabetic. Progress has been so limited however, that it has been debated whether these cells were present in the blood at levels high enough to facilitate direct detection.

In the January 15 issue of the Journal of Clinical Investigation, Rusung Tan and colleagues at British Columbia’s Children’s Hospital, Canada, reveal a method for directly measuring the level of these self-destructive cells in the blood of mice and demonstrate that these levels reliably distinguish mice that go on to develop diabetes from those that do not.


Drs. George Eisenbarth and Brian Kotzin from the Barbara Davis Diabetes Center for Childhood Diabetes and the University of Colorado Health Sciences Center state in their accompanying commentary that "quantifying (these) cells in patients genetically at high risk to develop disease and in patients with prediabetes may be a more direct (and at least complementary) approach to detect beta cell autoimmunity and predict which patients will go on to develop disease". The researchers suggest that this technique may also be used to detect this group of self-destructive cells involved in other autoimmune disorders, thereby increasing our powers of predicting disease.


###
CONTACT:
Rusung Tan
Department of Pathology and Laboratory Medicine
British Columbia’s Children’s Hospital
4480 Oak Street
Vancouver
British Columbia
CANADA V6H 3V4
Phone: (604) 875-3605
Fax: (604) 875-3777
E-mail: roo@interchange.ubc.ca

View the PDF of this article at: https://www.the-jci.org/press/16409.pdf

ACCOMPANYING COMMENTARY: Enumerating autoreactive T cells in peripheral blood: a big step in diabetes prediction.

CONTACT:
George S. Eisenbarth
Barbara Davis Center for Childhood Diabetes
Box B140
4200 East Ninth Avenue
Denver, CO 80262
USA
Phone: (303) 315-4891
Fax: (303) 315-4892
E-mail: george.eisenbarth@uchsc.edu

View the PDF of this commentary at: https://www.the-jci.org/press/17621.pdf


Brooke Grindlinger, PhD | EurekAlert!
Further information:
http://www.jci.org/
http://www.the-jci.org/press/16409.
http://www.the-jci.org/press/17621.pdf

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>