Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early diagnosis of childhood diabetes

16.01.2003


Diabetes is a chronic metabolic disorder that afflicts 17 million people in the United States and is the fourth leading cause of death. Over 2 million patients suffer from its most severe form - childhood diabetes – also known as Type 1, juvenile or insulin-dependent diabetes. We now understand that childhood diabetes is an autoimmune illness, where the body’s own white blood cells, which normally fight infection, turn and act against the body. These white blood cells target a specific group of cells in the pancreas – beta cells – that produce insulin, the hormone necessary to convert food into energy. Over time, such a large number of beta cells are destroyed that there is a lack of insulin and diabetes develops.



Scientists have long sought a means to predict the onset of diabetes through routine blood tests of destructive white blood cells so that high-risk individuals could be treated before all their beta cells are destroyed and they become diabetic. Progress has been so limited however, that it has been debated whether these cells were present in the blood at levels high enough to facilitate direct detection.

In the January 15 issue of the Journal of Clinical Investigation, Rusung Tan and colleagues at British Columbia’s Children’s Hospital, Canada, reveal a method for directly measuring the level of these self-destructive cells in the blood of mice and demonstrate that these levels reliably distinguish mice that go on to develop diabetes from those that do not.


Drs. George Eisenbarth and Brian Kotzin from the Barbara Davis Diabetes Center for Childhood Diabetes and the University of Colorado Health Sciences Center state in their accompanying commentary that "quantifying (these) cells in patients genetically at high risk to develop disease and in patients with prediabetes may be a more direct (and at least complementary) approach to detect beta cell autoimmunity and predict which patients will go on to develop disease". The researchers suggest that this technique may also be used to detect this group of self-destructive cells involved in other autoimmune disorders, thereby increasing our powers of predicting disease.


###
CONTACT:
Rusung Tan
Department of Pathology and Laboratory Medicine
British Columbia’s Children’s Hospital
4480 Oak Street
Vancouver
British Columbia
CANADA V6H 3V4
Phone: (604) 875-3605
Fax: (604) 875-3777
E-mail: roo@interchange.ubc.ca

View the PDF of this article at: https://www.the-jci.org/press/16409.pdf

ACCOMPANYING COMMENTARY: Enumerating autoreactive T cells in peripheral blood: a big step in diabetes prediction.

CONTACT:
George S. Eisenbarth
Barbara Davis Center for Childhood Diabetes
Box B140
4200 East Ninth Avenue
Denver, CO 80262
USA
Phone: (303) 315-4891
Fax: (303) 315-4892
E-mail: george.eisenbarth@uchsc.edu

View the PDF of this commentary at: https://www.the-jci.org/press/17621.pdf


Brooke Grindlinger, PhD | EurekAlert!
Further information:
http://www.jci.org/
http://www.the-jci.org/press/16409.
http://www.the-jci.org/press/17621.pdf

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>