Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial disc available to more patients as spine institute takes study to next phase

15.01.2003

An artificial disc being studied as a replacement for damaged discs of the spine has been approved to move into Phase II trials, making it available to more patients, according to John J. Regan, M.D., director of Cedars-Sinai Medical Center’s Institute for Spinal Disorders.

A recently completed Phase I study compared the prosthesis to traditional fusion. In that phase, patients were randomized, with one having a fusion operation for every two that received the artificial disc. Now all patients who qualify to participate in the study will receive the artificial disc.

A healthy disc is a complex structure between the bones of the spine. The nucleus, sandwiched in the center of the disc, contains fluid that serves as a cushion. Layered collagen fibers of the adjacent annulus provide strength. When the components work together, they give the back both stability and flexibility. But when a disc is damaged, the cushion can deflate, bulge or leak, and the collagen loses its elasticity.

Pain is often intense, especially when nerves get caught between degenerating components. To relieve the pain and strengthen the spine, surgeons sometimes remove a disc or place a bone graft in the spine to fuse two bones together and stop the grinding, crunching action in between. While fusion may relieve the pain, it prevents natural, independent motion.

“If something is going to move and one disc is not moving, motion at the discs next to it will increase,” said Dr. Regan. “The major benefit that the artificial disc appears to offer is that motion remains at the disc, which does not put additional stress on adjacent discs.”

Dr. Regan, who at Cedars-Sinai directs the largest multidisciplinary spine center in the western United States, said surgeons inserting the artificial disc enter through the abdomen, just below the navel, sparing the large muscles of the back. The operation usually takes about an hour and a half, which is less than fusion surgery because it does not require bone grafting. Also, while patients who undergo fusion surgery need to restrict their motion for up to a year, those who receive artificial discs are usually able to be mobile right away.

“Fusion is a very good operation for many people, helping them quite a bit in terms of relieving pain,” said Dr. Regan. “But one of the concerns we have with fusion is that long-term, people often come back with problems at the next disc, and they may need another operation. The artificial disc may prove to be a viable alternative, especially for younger, active patients.”

The Food and Drug Administration will use the results of the current studies to decide whether to approve the device for general use throughout the United States. It was previously approved in Europe.

Cedars-Sinai Medical Center is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthrough in biomedical research and superlative medical education. Named one of the 100 "Most Wired" hospitals in health care in 2001, the Medical Center ranks among the top 10 non-university hospitals in the nation for its research activities.

Sandra Van | Van Communications

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>