Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Artificial disc available to more patients as spine institute takes study to next phase


An artificial disc being studied as a replacement for damaged discs of the spine has been approved to move into Phase II trials, making it available to more patients, according to John J. Regan, M.D., director of Cedars-Sinai Medical Center’s Institute for Spinal Disorders.

A recently completed Phase I study compared the prosthesis to traditional fusion. In that phase, patients were randomized, with one having a fusion operation for every two that received the artificial disc. Now all patients who qualify to participate in the study will receive the artificial disc.

A healthy disc is a complex structure between the bones of the spine. The nucleus, sandwiched in the center of the disc, contains fluid that serves as a cushion. Layered collagen fibers of the adjacent annulus provide strength. When the components work together, they give the back both stability and flexibility. But when a disc is damaged, the cushion can deflate, bulge or leak, and the collagen loses its elasticity.

Pain is often intense, especially when nerves get caught between degenerating components. To relieve the pain and strengthen the spine, surgeons sometimes remove a disc or place a bone graft in the spine to fuse two bones together and stop the grinding, crunching action in between. While fusion may relieve the pain, it prevents natural, independent motion.

“If something is going to move and one disc is not moving, motion at the discs next to it will increase,” said Dr. Regan. “The major benefit that the artificial disc appears to offer is that motion remains at the disc, which does not put additional stress on adjacent discs.”

Dr. Regan, who at Cedars-Sinai directs the largest multidisciplinary spine center in the western United States, said surgeons inserting the artificial disc enter through the abdomen, just below the navel, sparing the large muscles of the back. The operation usually takes about an hour and a half, which is less than fusion surgery because it does not require bone grafting. Also, while patients who undergo fusion surgery need to restrict their motion for up to a year, those who receive artificial discs are usually able to be mobile right away.

“Fusion is a very good operation for many people, helping them quite a bit in terms of relieving pain,” said Dr. Regan. “But one of the concerns we have with fusion is that long-term, people often come back with problems at the next disc, and they may need another operation. The artificial disc may prove to be a viable alternative, especially for younger, active patients.”

The Food and Drug Administration will use the results of the current studies to decide whether to approve the device for general use throughout the United States. It was previously approved in Europe.

Cedars-Sinai Medical Center is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthrough in biomedical research and superlative medical education. Named one of the 100 "Most Wired" hospitals in health care in 2001, the Medical Center ranks among the top 10 non-university hospitals in the nation for its research activities.

Sandra Van | Van Communications

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>