Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human heart tissue generated from embryonic stem cells

14.01.2003


Human heart tissue has for the first time been created in the laboratory.



Generated from embryonic stem cells at the Technion-Israel Institute of Technology, the tissue could be used for testing and creating new drugs, for genetic studies, for tissue engineering and for studying the effects of various stresses on the heart.

"Everyone imagines the possibilities of embryonic stem cells in repairing broken hearts, but stem cell technology offers even more -- and it offers it much earlier," said Dr. Lior Gepstein of the Technion Faculty of Medicine who headed the study. "Currently, we test drugs on animals, but we would get more reliable results if we tested them on the actual human tissues."


He added that a variety of tissue types, from neurons to pancreas, could be generated through the same methods.

Even after extensive testing on humans, drugs are often found to have unexpected side effects, sometimes on an unrelated organ or tissue. Having human organs and tissues available in the lab could preclude these "surprises," according to Dr. Gepstein.

By observing the electrical signals in heart tissue researchers could also study the effect of various drugs and growth factors as well as different stresses. Moreover, this tissue can also be used to study which genes are activated as the heart develops, examine the impact of genetic mutations, and develop new drugs based on these observations. Finally, the ability to generate human tissue outside the body may advance the rapidly developing field of tissue engineering which attempts to combine functional cells with three-dimensional scaffolds to create tissue substitutes.

Contact: Martha Molnar
e-mail: martha@ats.org

Martha Molnar | EurekAlert!

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>