Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Our emotional brains: Both sides process the language of feelings...

13.01.2003


Both sides of the brain play a role in processing emotional communication, with the right side stepping in when we focus not on the "what" of an emotional message but rather on how it feels.



By studying blood flow velocity to each side of the brain, Belgian psychologists have opened a window onto the richness and complexity of human emotional communication. Their research appears in the January 2003 issue of Neuropsychology, published by the American Psychological Association (APA).

At Ghent University, Guy Vingerhoets, Ph.D., Celine Berckmoes, M.S., and Nathalie Stroobant, M.S., knew that the left brain is dominant for language, and the right brain is dominant for emotion. But what happens when the brain is faced with emotional language? To find out, the researchers used Transcranial Doppler Ultrasonography (ultrasound), an inexpensive, non-invasive and patient-friendly way to measure blood-flow velocity in the brain’s left and right middle cerebral arteries -- an indicator of activity level because neurons, to work, need blood-borne glucose and oxygen.


The researchers asked 36 participants, hooked up to ultrasound monitors, to identify the emotion conveyed in dozens of pre-recorded sentences. Vingerhoets et al. asked participants either to focus on the actual words (semantics) of the sentences, or to focus on the emotion conveyed by how they were spoken, in tone and intensity (prosody).

Each sentences had just one of four basic emotional meanings (happy, sad, angry or afraid) or a neutral semantic meaning. For example, "He really enjoys that funny cartoon" (happy), "The little girl lost both her parents" (sad), "Panic broke out in that dark tunnel" (fear), or "Always store disc in its protective case" (neutral). Actors spoke the sentences with either emotional or neutral prosody.

As they listened to the sentences, participants pointed to the appropriate emotion on a card listing them, using both fingers to minimize setting off one side of the brain only (because body movement on one side is controlled by the brain’s opposite side). Vingerhoets et al. found that when participants were asked to focus on what was said -- semantics -- blood flow velocity went up significantly on the left side of the brain. When participants shifted attention to how it was said -- tone of voice, whether happy, sad, anxious, angry or neutral -- velocity also went up markedly on the right side of the brain. However, it did not go down on the left -- probably, say the researchers, because the left brain processes meaningful semantic content automatically and is also helps to label the emotions.

Thus, physical evidence has revealed that the right hemisphere, while indeed the brain’s more "emotional" side, is not solely responsible for processing the expression of emotions. "Understanding emotional prosody," says Vingerhoets, "appears to activate right hemispheric brain regions." However, the left brain stays active to categorize or label the emotion -- as befits its dominance in language processing. "Even if you pay attention to the ’how’ information," says Vingerhoets, "you can’t help hearing the semantic content, the ’what’ of the message. We do this all the time; we are trained in it."

Turning to clinical implications, Vingerhoets says, "People with right hemispheric lesions would have more difficulty paying attention to and discriminating emotional prosody."

Article: "Cerebral Hemodynamics During Discrimination of Prosodic and Semantic Emotion in Speech Studied by Transcranial Doppler Ultrasonography," Guy Vingerhoets, Ph.D.; Celine Berckmoes, M.S.; and Nathalie Stroobant, M.S., Ghent University;

Pam Willenz | EurekAlert!
Further information:
http://www.apa.org/releases/emotional_brains_article.pdf

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>