Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Our emotional brains: Both sides process the language of feelings...

13.01.2003


Both sides of the brain play a role in processing emotional communication, with the right side stepping in when we focus not on the "what" of an emotional message but rather on how it feels.



By studying blood flow velocity to each side of the brain, Belgian psychologists have opened a window onto the richness and complexity of human emotional communication. Their research appears in the January 2003 issue of Neuropsychology, published by the American Psychological Association (APA).

At Ghent University, Guy Vingerhoets, Ph.D., Celine Berckmoes, M.S., and Nathalie Stroobant, M.S., knew that the left brain is dominant for language, and the right brain is dominant for emotion. But what happens when the brain is faced with emotional language? To find out, the researchers used Transcranial Doppler Ultrasonography (ultrasound), an inexpensive, non-invasive and patient-friendly way to measure blood-flow velocity in the brain’s left and right middle cerebral arteries -- an indicator of activity level because neurons, to work, need blood-borne glucose and oxygen.


The researchers asked 36 participants, hooked up to ultrasound monitors, to identify the emotion conveyed in dozens of pre-recorded sentences. Vingerhoets et al. asked participants either to focus on the actual words (semantics) of the sentences, or to focus on the emotion conveyed by how they were spoken, in tone and intensity (prosody).

Each sentences had just one of four basic emotional meanings (happy, sad, angry or afraid) or a neutral semantic meaning. For example, "He really enjoys that funny cartoon" (happy), "The little girl lost both her parents" (sad), "Panic broke out in that dark tunnel" (fear), or "Always store disc in its protective case" (neutral). Actors spoke the sentences with either emotional or neutral prosody.

As they listened to the sentences, participants pointed to the appropriate emotion on a card listing them, using both fingers to minimize setting off one side of the brain only (because body movement on one side is controlled by the brain’s opposite side). Vingerhoets et al. found that when participants were asked to focus on what was said -- semantics -- blood flow velocity went up significantly on the left side of the brain. When participants shifted attention to how it was said -- tone of voice, whether happy, sad, anxious, angry or neutral -- velocity also went up markedly on the right side of the brain. However, it did not go down on the left -- probably, say the researchers, because the left brain processes meaningful semantic content automatically and is also helps to label the emotions.

Thus, physical evidence has revealed that the right hemisphere, while indeed the brain’s more "emotional" side, is not solely responsible for processing the expression of emotions. "Understanding emotional prosody," says Vingerhoets, "appears to activate right hemispheric brain regions." However, the left brain stays active to categorize or label the emotion -- as befits its dominance in language processing. "Even if you pay attention to the ’how’ information," says Vingerhoets, "you can’t help hearing the semantic content, the ’what’ of the message. We do this all the time; we are trained in it."

Turning to clinical implications, Vingerhoets says, "People with right hemispheric lesions would have more difficulty paying attention to and discriminating emotional prosody."

Article: "Cerebral Hemodynamics During Discrimination of Prosodic and Semantic Emotion in Speech Studied by Transcranial Doppler Ultrasonography," Guy Vingerhoets, Ph.D.; Celine Berckmoes, M.S.; and Nathalie Stroobant, M.S., Ghent University;

Pam Willenz | EurekAlert!
Further information:
http://www.apa.org/releases/emotional_brains_article.pdf

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>