Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vampire bat bite packs potent clot-busting potential for strokes

10.01.2003


A potent clot-busting substance originally extracted from the saliva of vampire bats may be used up to three times longer than the current stroke treatment window – without increasing the risk for additional brain damage, according to research reported in today’s rapid access issue of Stroke: Journal of the American Heart Association.



The vampire bat saliva-derived clot buster is called Desmodus rotundus salivary plasminogen activator (DSPA) or desmoteplase. DSPA targets and destroys fibrin, the structural scaffold of blood clots, says senior author Robert Medcalf, Ph.D. NH & MRC senior research fellow at Monash University Department of Medicine at Box Hill Hospital in Victoria, Australia.

"When the vampire bat bites its victim, it secretes this powerful clot-dissolving (fibrinolytic) substance so that the victim’s blood will keep flowing, allowing the bat to feed," Medcalf explains.


In the mid-1980s, Wolf-Dieter Schleuning, M.D., Ph.D., now chief scientific officer of the German biotechnological company PAION GmbH, found that the vampire bat enzyme was genetically related to the clot buster tissue plasminogen activator (t-PA) but was more potent. Medcalf and Schleuning were pioneers in the cloning and the study of gene expression of t-PA and were among the first scientists to spot its potential use for heart attack.

The only Food and Drug Administration-approved clot buster for treating ischemic stroke is intravenous recombinant tissue plasminogen activator, (rt-PA). Ischemic strokes are caused when a blood clot or series of clots block blood supply to the brain. rt-PA is administered to a small percentage of stroke patients because current protocols allow treatment only within three hours of stroke onset. Also, rt-PA has been shown to promote brain cell death in some animal studies.

The clot-busting activity of DSPA increases about 13,000-fold when exposed to fibrin. The activity of rt-PA increases only 72-fold when exposed to fibrin.

Researchers injected either DSPA or rt-PA into the brains of mice, then tracked the survival of brain cells. They discovered that while DSPA zeros in on fibrin, it had no affect on two brain receptors that can promote brain damage, Medcalf says. In contrast, rt-PA greatly enhanced the degree of brain cell death following receptor activation and may therefore be detrimental if it’s delivered too long after stroke onset.

The highly fibrin-specific activity demonstrated by DSPA may be an important advantage over rt-PA. It is this single-minded clot-busting action that has stroke researchers especially intrigued because while rt-PA is effective at breaking up and dissolving clots, it must be given quickly – within just three hours of the onset of stroke symptoms. By contrast, Medcalf says DSPA could be a safe treatment option for a longer period since it has no detrimental effect on brain cells. The three-hour time window often allows insufficient time for patients to undergo imaging tests to determine that they have a true ischemic stroke before rt-PA can initiated, he says.

"This report provides data suggesting a potential advantage of a type of plasminogen activator derived from bat saliva over t-PA, the only FDA-approved treatment for selected patients with acute ischemic stroke," says Larry Goldstein, M.D., chairperson of the American Stroke Association Advisory Committee. "It needs to be understood that this study is limited to mice without stroke and focused only on toxicity. Whether this approach will prove either safe or efficacious in improving stroke outcomes requires further testing."

Goldstein is director of the Center for Cerebrovascular Disease at Duke University in Durham, N.C.

DSPA is being tested up to nine hours after stroke onset in human stroke patients in Europe, Asia and Australia. A U.S. study could begin this year, Schleuning says. Other co-authors are Gabriel T. Liberatore, Ph.D, André Samson; and Christopher Bladin, M.D.


###
CONTACT: For journal copies only,
please call: (214) 706-1396
For other information, call:
Carole Bullock: (214) 706-1279
Bridgette McNeill: (214) 706-1135

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>