Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vampire bat bite packs potent clot-busting potential for strokes

10.01.2003


A potent clot-busting substance originally extracted from the saliva of vampire bats may be used up to three times longer than the current stroke treatment window – without increasing the risk for additional brain damage, according to research reported in today’s rapid access issue of Stroke: Journal of the American Heart Association.



The vampire bat saliva-derived clot buster is called Desmodus rotundus salivary plasminogen activator (DSPA) or desmoteplase. DSPA targets and destroys fibrin, the structural scaffold of blood clots, says senior author Robert Medcalf, Ph.D. NH & MRC senior research fellow at Monash University Department of Medicine at Box Hill Hospital in Victoria, Australia.

"When the vampire bat bites its victim, it secretes this powerful clot-dissolving (fibrinolytic) substance so that the victim’s blood will keep flowing, allowing the bat to feed," Medcalf explains.


In the mid-1980s, Wolf-Dieter Schleuning, M.D., Ph.D., now chief scientific officer of the German biotechnological company PAION GmbH, found that the vampire bat enzyme was genetically related to the clot buster tissue plasminogen activator (t-PA) but was more potent. Medcalf and Schleuning were pioneers in the cloning and the study of gene expression of t-PA and were among the first scientists to spot its potential use for heart attack.

The only Food and Drug Administration-approved clot buster for treating ischemic stroke is intravenous recombinant tissue plasminogen activator, (rt-PA). Ischemic strokes are caused when a blood clot or series of clots block blood supply to the brain. rt-PA is administered to a small percentage of stroke patients because current protocols allow treatment only within three hours of stroke onset. Also, rt-PA has been shown to promote brain cell death in some animal studies.

The clot-busting activity of DSPA increases about 13,000-fold when exposed to fibrin. The activity of rt-PA increases only 72-fold when exposed to fibrin.

Researchers injected either DSPA or rt-PA into the brains of mice, then tracked the survival of brain cells. They discovered that while DSPA zeros in on fibrin, it had no affect on two brain receptors that can promote brain damage, Medcalf says. In contrast, rt-PA greatly enhanced the degree of brain cell death following receptor activation and may therefore be detrimental if it’s delivered too long after stroke onset.

The highly fibrin-specific activity demonstrated by DSPA may be an important advantage over rt-PA. It is this single-minded clot-busting action that has stroke researchers especially intrigued because while rt-PA is effective at breaking up and dissolving clots, it must be given quickly – within just three hours of the onset of stroke symptoms. By contrast, Medcalf says DSPA could be a safe treatment option for a longer period since it has no detrimental effect on brain cells. The three-hour time window often allows insufficient time for patients to undergo imaging tests to determine that they have a true ischemic stroke before rt-PA can initiated, he says.

"This report provides data suggesting a potential advantage of a type of plasminogen activator derived from bat saliva over t-PA, the only FDA-approved treatment for selected patients with acute ischemic stroke," says Larry Goldstein, M.D., chairperson of the American Stroke Association Advisory Committee. "It needs to be understood that this study is limited to mice without stroke and focused only on toxicity. Whether this approach will prove either safe or efficacious in improving stroke outcomes requires further testing."

Goldstein is director of the Center for Cerebrovascular Disease at Duke University in Durham, N.C.

DSPA is being tested up to nine hours after stroke onset in human stroke patients in Europe, Asia and Australia. A U.S. study could begin this year, Schleuning says. Other co-authors are Gabriel T. Liberatore, Ph.D, André Samson; and Christopher Bladin, M.D.


###
CONTACT: For journal copies only,
please call: (214) 706-1396
For other information, call:
Carole Bullock: (214) 706-1279
Bridgette McNeill: (214) 706-1135

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>