Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover novel function of gene often associated with cancer


In an unusual disease known as Bloom syndrome, patients exhibit an extremely high incidence of cancers in many tissues. In fact, some experts consider Bloom syndrome to be among the most cancer-prone hereditary diseases known.

Although the illness is rare, it fascinates scientists since it can teach them more about how cancers arise and how the body normally suppresses them. Information gleaned from studies of the syndrome should provide insights into other forms of cancer, they say.

Now, working with fruit flies on the gene which, when mutated, causes Bloom syndrome in humans, scientists at the University of North Carolina at Chapel Hill have discovered more about the key mechanisms by which DNA inside cells is repaired.

A report on the findings appears in the Jan. 10 issue of the journal Science. Authors are Drs. Melissa D. Adams and Mitch McVey, both postdoctoral fellows in biology, and Dr. Jeff J. Sekelsky, assistant professor of biology and a faculty member with the UNC Program in Molecular Biology and Biotechnology. McVey is a participant in UNC’s SPIRE (Seeding Postdoctoral Innovators in Research and Education) Program.

Their new paper concerns the BLM gene, Sekelsky said. Inherited imperfections in that gene, also known as mutations, lead to the high likelihood of cancer.

A key feature of the BLM gene identified in 1995 was that it encodes an enzyme that unwinds DNA double helices, he said. BLM is a member of a family of related enzymes. Defects in other members of this family can cause distinct hereditary diseases, including Werner syndrome, in which patients experience accelerated aging. Although BLM is thought to be important in DNA repair, the precise function of the gene has remained unclear.

"In our study, we sought to determine the role of BLM in DNA repair," Sekelsky said. "We conducted our experiments in Drosophila melanogaster, the fruit fly, due to the ease of manipulating the animals genetically.

"We found that the Drosophila BLM gene has a specific function of repairing DNA breaks, such as those that occur after exposure to X-rays."

Adams, McVey and he also discovered that the aberrant DNA repair that occurs in the absence of BLM results in chromosome rearrangements similar to those seen in follicular lymphoma, the most common type of human lymphoma.

"We feel that our results represent a substantial step forward in understanding this important DNA repair gene," Sekelsky said. "This will aid in our understanding of Bloom syndrome, DNA repair pathways and, perhaps most importantly, cellular defects that lead to cancer."

The team is conducting follow-up studies to better understand those important biological processes, he said.

A grant from the Ellison Medical Foundation supported the work.

Bloom syndrome is an autosomal, recessive disorder, meaning that when both parents carry the defective BLM gene, each of their children carries a 50 percent chance of being a carrier of the defective gene, a 25 percent chance of being born with the illness and a 25 percent chance of being entirely free of it.

Besides being highly cancer-prone, children born with the syndrome are short throughout their lives, sterile and have poorly functioning immune systems.

UNC News Services

Note: Sekelsky, Adams and McVey can be reached at 919-843-9400 or 843-9401.

David Williamson | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>