Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UC Davis study identifies c-reactive protein as cause of blood clot formation


Further underscoring the limitations of cholesterol screening in assessing a patient’s risk for heart disease, a new study by UC Davis physicians is the first to conclusively link C-reactive proteins (CRP) to formation of blood clots, a major cause of heart attacks, strokes and other vascular disease. Until now, CRP had been recognized mainly as a risk marker of heart disease. The study appears in the Jan. 25 print edition of the journal Circulation, a publication of the American Heart Association, and is available on the Web at

"The study provides further conclusive evidence that CRP, until now viewed as an ’innocent bystander’ in the formation of heart disease, is in fact a key culprit that causes inflammation in the arteries, resulting in formation of clots and plaque that lead to heart attacks and strokes," said Ishwarlal Jialal, professor of pathology and director of the Laboratory for Atherosclerosis and Metabolic Research at UC Davis School of Medicine and Medical Center.

The study demonstrates that CRP causes cells in the arteries, known as human aortic endothelial cells, to produce higher levels of an enzyme that inhibits the breakdown of clots. The enzyme, plasminogen activator inhibitor-1 (PAI-1) is also a strong risk marker for heart disease, especially in diabetics. The study used a variety of techniques to convincingly show how CRP activates PAI-1 in aortic cells, causing lesions in the arteries that ultimately lead to formation of plaque and blood clots.

The study underscores the need to use CRP screening to more accurately assess at-risk populations, according to Jialal, who is the Robert E. Stowell Endowed Chair in Experimental Pathology.

"Based on these findings, if a patient has normal cholesterol but high levels of CRP, an aggressive course of treatment is recommended to help the patient reduce the risk of heart attack, stroke and other heart diseases," said Jialal. "By relying on cholesterol alone, a physician could significantly underestimate a patient’s risk level."

High CRP levels can occur in otherwise healthy individuals, according to the study. Patients with high levels of CRP can reduce risk by losing weight, exercising on a regular basis, stopping cigarette smoking, or taking statin drugs, Jialal added.

The study also closely links CRP and PAI-1 to diabetes and metabolic syndrome, a disorder characterized by a disproportionate amount of abdominal fat, elevated blood pressure, blood sugar and triglycerides and low levels of HDL, the "good" kind of cholesterol.

"In another important discovery, this study shows that in the presence of high blood-glucose levels, CRP is especially active in the stimulation of PAI-1. As a result, the effect of CRP is especially acute for patients with diabetes and metabolic syndrome," said Sridevi Devaraj, a co-investigator and assistant professor of pathology at UC Davis. "Given the current pandemic of obesity which increases one’s risk of diabetes, the study’s insights about the active role of CRP and PAI-1 in heart disease are especially valuable."

The new study adds to the findings of another landmark study on CRP by Jialal’s team at UC Davis that showed CRP actually damages the blood vessel wall by blocking a critical "protector" protein and inhibiting nitric oxide.

"Interestingly, the new study indicates that activation of PAI-1 was unrelated to the nitric oxide inhibition identified in the earlier study," said Jialal. "This indicates that CRP has multiple, independent effects that cause heart disease."

Dan Yan Xu, a physician and postgraduate researcher in the pathology department at UC Davis, also contributed to the study.

This study was supported by grants from the National Institutes of Health, the Juvenile Diabetes Foundation and American Diabetes Association.

Copies of all news releases from UC Davis Health System are available on the Web at

Carole Gan | EurekAlert!
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>