Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis study identifies c-reactive protein as cause of blood clot formation

10.01.2003


Further underscoring the limitations of cholesterol screening in assessing a patient’s risk for heart disease, a new study by UC Davis physicians is the first to conclusively link C-reactive proteins (CRP) to formation of blood clots, a major cause of heart attacks, strokes and other vascular disease. Until now, CRP had been recognized mainly as a risk marker of heart disease. The study appears in the Jan. 25 print edition of the journal Circulation, a publication of the American Heart Association, and is available on the Web at www.circulationaha.org.

"The study provides further conclusive evidence that CRP, until now viewed as an ’innocent bystander’ in the formation of heart disease, is in fact a key culprit that causes inflammation in the arteries, resulting in formation of clots and plaque that lead to heart attacks and strokes," said Ishwarlal Jialal, professor of pathology and director of the Laboratory for Atherosclerosis and Metabolic Research at UC Davis School of Medicine and Medical Center.

The study demonstrates that CRP causes cells in the arteries, known as human aortic endothelial cells, to produce higher levels of an enzyme that inhibits the breakdown of clots. The enzyme, plasminogen activator inhibitor-1 (PAI-1) is also a strong risk marker for heart disease, especially in diabetics. The study used a variety of techniques to convincingly show how CRP activates PAI-1 in aortic cells, causing lesions in the arteries that ultimately lead to formation of plaque and blood clots.



The study underscores the need to use CRP screening to more accurately assess at-risk populations, according to Jialal, who is the Robert E. Stowell Endowed Chair in Experimental Pathology.

"Based on these findings, if a patient has normal cholesterol but high levels of CRP, an aggressive course of treatment is recommended to help the patient reduce the risk of heart attack, stroke and other heart diseases," said Jialal. "By relying on cholesterol alone, a physician could significantly underestimate a patient’s risk level."

High CRP levels can occur in otherwise healthy individuals, according to the study. Patients with high levels of CRP can reduce risk by losing weight, exercising on a regular basis, stopping cigarette smoking, or taking statin drugs, Jialal added.

The study also closely links CRP and PAI-1 to diabetes and metabolic syndrome, a disorder characterized by a disproportionate amount of abdominal fat, elevated blood pressure, blood sugar and triglycerides and low levels of HDL, the "good" kind of cholesterol.

"In another important discovery, this study shows that in the presence of high blood-glucose levels, CRP is especially active in the stimulation of PAI-1. As a result, the effect of CRP is especially acute for patients with diabetes and metabolic syndrome," said Sridevi Devaraj, a co-investigator and assistant professor of pathology at UC Davis. "Given the current pandemic of obesity which increases one’s risk of diabetes, the study’s insights about the active role of CRP and PAI-1 in heart disease are especially valuable."

The new study adds to the findings of another landmark study on CRP by Jialal’s team at UC Davis that showed CRP actually damages the blood vessel wall by blocking a critical "protector" protein and inhibiting nitric oxide.

"Interestingly, the new study indicates that activation of PAI-1 was unrelated to the nitric oxide inhibition identified in the earlier study," said Jialal. "This indicates that CRP has multiple, independent effects that cause heart disease."

Dan Yan Xu, a physician and postgraduate researcher in the pathology department at UC Davis, also contributed to the study.

This study was supported by grants from the National Institutes of Health, the Juvenile Diabetes Foundation and American Diabetes Association.


Copies of all news releases from UC Davis Health System are available on the Web at http://news.ucdmc.ucdavis.edu

Carole Gan | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu/medical_center/index
http://news.ucdmc.ucdavis.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>