Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New weapon to fight hospital infections

03.01.2003


A potential new weapon in the fight against hospital acquired infections has been discovered by researchers at the University of Leeds.



The scientists studied the effect of negative air ionisers on infections caused by acinetobacter; a pathogen responsible for increasing numbers of sometimes fatal infections amongst hospital patients. Ionisers were placed in the intensive care unit at St James’s University Hospital, which, like similar wards across the UK, has had recurrent problems with infections caused by acinetobacter.

For the first six months the researchers, from the aerobiological research group in the University’s school of civil engineering, monitored the normal situation in the unit, taking samples from surfaces, patients and from the air to monitor bacteria levels, and logging the number of patient infections. During the second half of the year-long trial, the ionisers were switched on, and the results were impressive: infections due to acinetobacter reduced dramatically.


Lead researcher Dr Clive Beggs said: "This is the first epidemiological study of its kind into the use of ionisers in hospital wards and the initial results are very promising. We believe that the negative air ions are removing the bacteria from the air, so stopping the transmission of infection. Our tests have focused solely on acinetobacter, but it’s possible the ionisers may have had an effect on other airborne bacteria. We now need to carry out further research to determine exactly how the ions work and how widespread their effects could be."

Even without further research, the fact the ionisers are already making a difference is good enough for lead consultant at St James’s intensive care unit, Dr Stephen Dean. "We wanted to be involved in the trial as infections are a major issue for units such as ours, where many patients are already very vulnerable," he said. "The results have been fantastic - so much so that we asked the University to leave the ionisers with us. Since the trial finished in May, we’ve kept them in operation, and have continued to see greatly reduced acinetobacter infections on the ward."

Dr Kevin Kerr, lead clinical microbiologist on the project, said: “Acinetobacter infections are very difficult to treat as the bacterium is resistant to nearly all antibiotics, so prevention of these infections is of key importance. Ionisers may become a powerful weapon in the fight against hospital-acquired infection.”

The researchers have compiled their report for NHS Estates who funded the study, and will be publishing a paper on the research in the new year. They are continuing their work on negative air ions and are conducting further trials and experiments at the University of Leeds.

Abigail Chard | alfa
Further information:
http://www.leeds.ac.uk/media/current/acinetobacter.htm

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>