Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An unlikely new weapon against a deadly bacteria in oysters: A virus

19.12.2002


People looking forward to eating raw oysters over the holidays will welcome news that scientists are making progress in the fight against a rare but deadly disease associated with the tasty bivalves.

Two University of Florida researchers report curing mice of the disease by using a virus to attack its bacterial source – Vibrio vulnificus. The scientists say the research may lead to techniques to purify oysters after harvest but before they reach raw bars and seafood markets – and might one day result in a better cure for the disease in people.

The work, reported in a November article in the journal Infection and Immunity, is part of a growing trend in research to use bacteria-attacking viruses, or "phages," to cure diseases caused by bacteria, said Paul Gulig, a UF professor of molecular genetics and microbiology at UF’s College of Medicine. Although the disease caused by Vibrio responds to antibiotic treatment if caught early enough, the trend toward research of phages is spurred in part by the increasing ineffectiveness of antibiotics in killing ever-more-resistant bacteria, he and other researchers said.



"Phages haven’t been used in the United States since the early 20th century because antibiotics have worked pretty well," he said. "That’s changing now, and there is more interest in investigating the phage alternative."

Vibrio vulnificus is related to the cholera bacterium and occurs naturally in the presence of microscopic algae in seawater. When oysters eat the algae, Vibrio becomes concentrated. People can come into contact with the bacterium by eating raw oysters (cooking the bivalves kills the bacterium), or by exposing an open wound to water or mud where the bacterium is present.

Most exposed people suffer no ill effects because their bodies easily fight off the bacterium. However, people who suffer from liver damage – from alcohol-related cirrhosis, for example – may become infected. There are 30 to 50 cases of Vibrio vulnificus disease reported annually in the United States. Although rare, the disease is severe and often fatal, killing between 50 percent and 75 percent of those who are infected. The bacterium causes flu-like symptoms, followed by high fever, shock and half-dollar sized blood blisters mostly on the patient’s legs.

Gulig and Donna Duckworth, a professor of molecular genetics and microbiology and co-author of the article, said because Vibrio resembles the flu or less-harmful diseases, it often remains undiagnosed until its later stages. At that point, the disease does not respond well to antibiotics, whence its high mortality rate, they said. Seeking an alternative to antibiotics, he and Duckworth decided to test the effectiveness of phages in attacking the disease.

The scientists isolated phages that prey naturally on the bacterium from oysters purchased from seafood markets and in mud collected from oyster beds in Florida’s coastal waters. They grew the phages in the laboratory, then injected solutions containing concentrated amounts of the virus into the tail veins of mice infected with Vibrio. The result: The researchers found the phages cured the mice even well after they had begun experiencing symptoms of the disease.

"It was very clear that the phage treatment for many of the mice could completely protect them. It could prevent death, and it could essentially clear the mice of bacteria," Gulig said. "We showed that, in typical infections of mice, we get 100 million bacteria per gram of tissue, and in these treated mice we essentially could not detect any bacteria at all."

Gulig said the project didn’t compare the phages with similarly timed antibiotic treatments, so the researchers couldn’t say which is more effective. But phages have some tantalizing advantages over antibiotics, he said. While antibiotics naturally become diluted and leave the body after a period of time, phages grow and multiply until they have preyed on all the available bacteria, he said. Also, antibiotics are general treatments, killing harmful bacteria as well beneficial organisms, making patients vulnerable to yeast infections and other maladies. Phages, by contrast, are extremely specific, with the virus seeking only its natural prey and thus causing no unexpected outcomes.

The research was funded with a $64,000 grant from the U.S. Department of Commerce SeaGrant Program. The agency has awarded the scientists, in collaboration with Anita Wright, a UF assistant professor of food science and human nutrition, an additional $144,000 to pursue a new direction: using phages to purify oysters before they reach consumers. The idea would be to submerge the harvested oysters in vats of phage-treated water, allowing them to filter in the phage and kill off the Vibrio vulnificus before the oysters reach the market. Such technology would be quicker and cheaper to develop and commercialize than a new treatment for Vibrio disease, because it wouldn’t have to meet regulatory standards for human medicine, Gulig said. "It would be a truly natural treatment, since we’re essentially treating the oysters with something they’re already exposed to in the wild," Gulig said.

Alexander Sulakvelidze, an assistant professor of microbiology and epidemiology at the University of Maryland, said the method appears promising.

"There are a number of approaches that allow you to clear oysters of Vibrio vulnificus, and none of them are optimal," Sulakvelidze said.

"They are very expensive or not very applicable for treating live oysters, so this may provide an additional tool to improve the safety of oysters."

Another goal of the UF research is to determine if phages can be used in a topical skin cream to help prevent contraction of Vibrio through skin wounds. "One thing we’ve thought about is having little vials of phage that fishermen can use prophylactically as soon as they get cut," Duckworth said.



Writer: Aaron Hoover
ahoover@ufl.edu
Sources: Paul Gulig, Donna Duckworth
352-392-0050, 352-392-0681
gulig@ufl.edu, duckwort@mgm.ufl.edu


Aaron Hoover | EurekAlert!
Further information:
http://www.ufl.edu/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>