Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zengen, Inc. announces novel approach to reduce organ rejection

17.12.2002


Study in Transplantation provides strong support for the development of therapeutics utilizing company’s proprietary peptide technology



Zengen, Inc. announced today that its scientists have discovered a novel approach to reduce organ rejection based on the Company’s proprietary research with alpha-Melanocyte-Stimulating Hormone (a-MSH). The research shows that treatment with the a-MSH peptide caused a significant increase in allograft (transplanted tissue) survival and a marked decrease in leukocyte (or white blood cell) infiltration, one of the main causes of infection leading to organ rejection. The study entitled, "a-Melanocyte-Stimulating Hormone Protects the Allograft in Experimental Heart Transplantation," appears in the December 15th issue of Transplantation.

"These results demonstrate that the protection of the transplanted tissue from early injury with a-MSH treatment can postpone rejection," said James Lipton, Ph.D., chief scientific officer and director of Zengen. "This is an important and encouraging advance in the field of organ transplantation and these data provide strong support for the development of anti-rejection therapies utilizing our proprietary peptide molecules based on the larger a-MSH peptide."


The preclinical study was designed to determine whether a-MSH treatment protects the allograft and prolongs survival in experimental heart transplantation, in the absence of immunosuppressive therapies. Donor cardiac grafts (Brown Norway) were transplanted into the abdomen of recipient (Lewis) rats. Treatments consisted of intraperitoneal injections of the a-MSH peptide or saline from the time of transplantation until sacrifice or spontaneous rejection.

Results show that median survival time of the peptide-treated organs was significantly prolonged (10 days) as compared to the untreated ones (6 days) (p<0.0001). Histopathologic and gene expression patterns of allografts from treated animals, examined 24 hours after transplantation, revealed substantial benefit over untreated animals and persisted over time. At four days post-transplantation, graft histopathologic appearance was healthier in treated animals. Further, the research revealed that treatment with a-MSH caused a marked inhibition of ET-1 gene expression. ET-1 is the most potent endogenous vasoconstrictor yet identified and contributes to reperfusion injury, transplant rejection and several cardiovascular diseases.

"This is a remarkable increase in duration in non-immunosuppressed transplanted organs, as data from this study and others show that hearts transplanted in these animal models are invariably rejected within six to seven days," added Dr. Lipton. "The beneficial effects of a-MSH treatment observed in these studies could be even more pronounced in clinical transplantation, particularly with regard to its significant role in ET-1 inhibition. We are excited by these findings, especially as we advance our peptide technology program in organ transplantation."


About Zengen, Inc.
Incorporated in 1999, Zengen, Inc. is a biopharmaceutical company focused on discovering, developing and commercializing innovative products to treat and prevent infection and inflammation through application of its proprietary peptide technologies. Zengen’s novel molecules were developed from more than 25 years of original research in the US, Europe and Asia on peptide molecules derived from alpha-Melanocyte-Stimulating Hormone (a-MSH). A naturally occurring molecule, a-MSH modulates inflammatory and immune responses. James Lipton, Ph.D., Zengen’s chief scientific officer, chairman of the scientific advisory board and director, and his collaborators first demonstrated that a-MSH possesses anti-inflammatory properties and uncovered the specific activity of the carboxy-terminal tripeptide region (C-terminal peptide) of the a-MSH peptide. These discoveries led to the development of Zengen’s proprietary peptide molecules, including CZEN 002, a synthetic octapeptide. There is abundant evidence of the anti-inflammatory and anti-infective activity of these novel molecules from both in vivo and in vitro research. Zengen is currently conducting phase I/II clinical trials with CZEN 002 in vaginitis. For more information about Zengen, please visit www.zengen.com.

Zengen, Inc. Forward-Looking Statement Disclaimer

This announcement may contain, in addition to historical information, certain forward-looking statements that involve risks and uncertainties. Such statements reflect management’s current views and are based on certain assumptions. Actual results could differ materially from those currently anticipated as a result of a number of factors. The company is developing several products for potential future marketing. There can be no assurance that such development efforts will succeed, that such products will receive required regulatory clearance or that, even if such regulatory clearance were received, such products would ultimately achieve commercial success.

Kathy Vincent | EurekAlert!
Further information:
http://www.zengen.com/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>