Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zengen, Inc. announces novel approach to reduce organ rejection

17.12.2002


Study in Transplantation provides strong support for the development of therapeutics utilizing company’s proprietary peptide technology



Zengen, Inc. announced today that its scientists have discovered a novel approach to reduce organ rejection based on the Company’s proprietary research with alpha-Melanocyte-Stimulating Hormone (a-MSH). The research shows that treatment with the a-MSH peptide caused a significant increase in allograft (transplanted tissue) survival and a marked decrease in leukocyte (or white blood cell) infiltration, one of the main causes of infection leading to organ rejection. The study entitled, "a-Melanocyte-Stimulating Hormone Protects the Allograft in Experimental Heart Transplantation," appears in the December 15th issue of Transplantation.

"These results demonstrate that the protection of the transplanted tissue from early injury with a-MSH treatment can postpone rejection," said James Lipton, Ph.D., chief scientific officer and director of Zengen. "This is an important and encouraging advance in the field of organ transplantation and these data provide strong support for the development of anti-rejection therapies utilizing our proprietary peptide molecules based on the larger a-MSH peptide."


The preclinical study was designed to determine whether a-MSH treatment protects the allograft and prolongs survival in experimental heart transplantation, in the absence of immunosuppressive therapies. Donor cardiac grafts (Brown Norway) were transplanted into the abdomen of recipient (Lewis) rats. Treatments consisted of intraperitoneal injections of the a-MSH peptide or saline from the time of transplantation until sacrifice or spontaneous rejection.

Results show that median survival time of the peptide-treated organs was significantly prolonged (10 days) as compared to the untreated ones (6 days) (p<0.0001). Histopathologic and gene expression patterns of allografts from treated animals, examined 24 hours after transplantation, revealed substantial benefit over untreated animals and persisted over time. At four days post-transplantation, graft histopathologic appearance was healthier in treated animals. Further, the research revealed that treatment with a-MSH caused a marked inhibition of ET-1 gene expression. ET-1 is the most potent endogenous vasoconstrictor yet identified and contributes to reperfusion injury, transplant rejection and several cardiovascular diseases.

"This is a remarkable increase in duration in non-immunosuppressed transplanted organs, as data from this study and others show that hearts transplanted in these animal models are invariably rejected within six to seven days," added Dr. Lipton. "The beneficial effects of a-MSH treatment observed in these studies could be even more pronounced in clinical transplantation, particularly with regard to its significant role in ET-1 inhibition. We are excited by these findings, especially as we advance our peptide technology program in organ transplantation."


About Zengen, Inc.
Incorporated in 1999, Zengen, Inc. is a biopharmaceutical company focused on discovering, developing and commercializing innovative products to treat and prevent infection and inflammation through application of its proprietary peptide technologies. Zengen’s novel molecules were developed from more than 25 years of original research in the US, Europe and Asia on peptide molecules derived from alpha-Melanocyte-Stimulating Hormone (a-MSH). A naturally occurring molecule, a-MSH modulates inflammatory and immune responses. James Lipton, Ph.D., Zengen’s chief scientific officer, chairman of the scientific advisory board and director, and his collaborators first demonstrated that a-MSH possesses anti-inflammatory properties and uncovered the specific activity of the carboxy-terminal tripeptide region (C-terminal peptide) of the a-MSH peptide. These discoveries led to the development of Zengen’s proprietary peptide molecules, including CZEN 002, a synthetic octapeptide. There is abundant evidence of the anti-inflammatory and anti-infective activity of these novel molecules from both in vivo and in vitro research. Zengen is currently conducting phase I/II clinical trials with CZEN 002 in vaginitis. For more information about Zengen, please visit www.zengen.com.

Zengen, Inc. Forward-Looking Statement Disclaimer

This announcement may contain, in addition to historical information, certain forward-looking statements that involve risks and uncertainties. Such statements reflect management’s current views and are based on certain assumptions. Actual results could differ materially from those currently anticipated as a result of a number of factors. The company is developing several products for potential future marketing. There can be no assurance that such development efforts will succeed, that such products will receive required regulatory clearance or that, even if such regulatory clearance were received, such products would ultimately achieve commercial success.

Kathy Vincent | EurekAlert!
Further information:
http://www.zengen.com/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>