Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common cancer gene controls blood vessel growth

17.12.2002


Scientists from the Kimmel Cancer Center at Johns Hopkins and Northwestern University have found a new target to squeeze off a tumor’s blood supply. Research published in the December 17 issue of Cancer Cell shows how a common cancer-causing gene controls the switch for tumor blood vessel growth known as angiogenesis.



Recent evidence has shown that this gene, called Id1, is important for angiogenesis, a factor in cancer progression because it provides a needed blood source to tumor cells.

The new study concludes that the Id1 gene controls the angiogenesis pathway in certain cancers by turning off the production of a protein, thrombospondin-1 (TSP-1), a naturally occurring angiogenesis suppressor.


"We found activation of the Id1 gene, which is highly expressed in melanoma, breast, head and neck, brain, cervical, prostate, pancreatic and testicular cancers, results in decreased expression of TSP-1 and increased tumor blood vessel formation," says Rhoda M. Alani, M.D., assistant professor of oncology, dermatology, molecular biology and genetics in the Kimmel Cancer Center at Johns Hopkins and director of this study.

The researchers also found TSP-1 levels that were three- to fivefold greater in mice with Id1 gene function turned off than in mice with normal Id1.

To confirm their findings, the research team monitored blood vessel growth in mice with normal and crippled Id1 genes, then added a chemical that wiped out TSP-1. Control mice with normal Id1 showed well-developed blood vessels. Mice with a non-functioning Id1 gene showed little blood vessel growth when TSP-1 was activated. When the anti-TSP chemical was added to these mice, blood vessel growth resumed.

Efforts to find a way to use TSP-1 as an anti-cancer agent are under way in animal studies. "Because TSP-1 occurs naturally throughout the body, it can’t be used as a drug," says Roberto Pili, M.D., assistant professor of oncology in the Kimmel Cancer Center and co-author of the study. "But it could potentially be paired with another molecule and programmed to be released only in tumors." In addition to TSP-1, Alani and colleagues are studying Id1 targets important in other biologic processes, including signaling pathways inside cells.


This research was funded by the National Institutes of Health and the American Cancer Society.

Co-authors include Olga Volpert at the RH Lurie Cancer Center at Northwestern University, Hashmat Sikder at Johns Hopkins, Thomas Nelius and Tetiana Zaichuk from Northwestern, and Chad Morris, Clinton Shiflett, Meghann Devlin and Katherine Conant at Johns Hopkins.

Volpert, Olga V. et al, "Id1 regulates angiogenesis through transcriptional repression of thrombospondin-1," Cancer Cell, Dec. 2002, Vol. 2.

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinsmedicine.org

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>