Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increased bone mass in a calcitonin knockout mouse full of surprises

17.12.2002


Increased bone mass in a calcitonin knockout mouse full of surprises



Bone is in a constant state of remodeling, during which osteoclasts remove old bone (resorption) and osteoblasts form new bone (formation). Calcitonin is a hormone produced by the thyroid gland and inhibits bone resorption. Following menopause, the rate of bone loss is accelerated, however women with post-menopausal osteoporosis that are treated with calcitonin (by injection or nasal spray) demonstrate increased bone mass and strength, in addition to a decrease in the rate of bone fractures. Following alternative processing, the gene encoding calcitonin (CT/CGRP) also encodes a second peptide: calcitonin gene-related peptide-a (CGRPa), however the role of this peptide in bone metabolism has not been clearly defined.

To better understand the role of calcitonin and CGRP-a in bone metabolism Robert Gagel and colleagues at the University of Texas M.D. Anderson Cancer Center, USA, created mice in which the CT/CGRP gene had been deleted. Given that both calcitonin and CGRP have been shown to inhibit bone resorption and CGRP is known to stimulate bone formation, the authors predicted that there would be either no effect of this deletion on bone mass, or there could be some bone loss.


In the December 16 issue of the Journal of Clinical Investigation, the authors report their surprising finding that CT/CGRP-deficient mice have greater bone mass, increased bone formation, and were able to maintain bone mass during estrogen deficiency by increasing bone formation. These findings suggest an important and novel function for the products of the CT/CGRP gene, that was previously unrecognized. They also suggest that the development of an antagonist to the CT/CGRP gene product(s) may be useful in the prevention of bone loss associated with estrogen deficiency.

Mone Zaidi and colleagues from the Mount Sinai Bone Program at Mount Sinai Hospital, New York, discuss these surprising findings in their accompanying commentary.

CONTACT:
Robert F. Gagel
The University of Texas M.D. Anderson Cancer Center
Department of Endocrine Neoplasia and Hormonal Disorders
1400 Holcombe Blvd.
Box 433
Houston, TX 77030
USA
Phone: 713-792-6517
Fax: 713-794-1818
E-mail: rgagel@mdanderson.org

ACCOMPANYING COMMENTARY: Calcitonin and bone formation: a knockout full of surprises

CONTACT:
Mone Zaidi
Mount Sinai School of Medicine
Annenberg 5, PO 1055
Division of Endocrinology
One Gustave Levy Place
New York, NY 10029
USA
Phone: 212-241-8797
Fax: 212-426-8312
E-mail: mone.zaidi@mssm.edu

Brooke Grindlinger | EurekAlert!
Further information:
http://www.the-jci.org/press/17425.pdf
http://www.the-jci.org/press/14218.pdf

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>