Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers developing new arsenal in war against cancer

16.12.2002


In the battle against cancer, Virginia Tech researchers have developed a potential warhead to better kill cancer cells, a new missile to deliver the warhead more efficiently to the diseased areas, and a new detonation device once the warhead is in place.



In a cross-disciplinary effort, the researchers, using photodynamic therapy (PDT), have obtained results in three different areas that, used together, have the possibility of providing more efficient, less invasive, and more specific treatments for cancer and other diseases such as age-related macular-degeneration.

A long-term concept has held that one should be able to use light-activated compounds to kill diseased cells, said Karen Brewer, associate professor of chemistry. The researchers have developed new tri-metallic supra-molecules that can be positioned in exact parts of cancer cells and excited by a therapeutic wavelength at which light propagates efficiently through tissue. Only when the light hits the supra-molecules do they become toxic to the cancer cells.


The advantages are many. The non-surgical process avoids the debilitating side effects of normal chemotherapy. The system enables the scientists to place the supra-molecules at specific locations in cells and to deliver light activating the cancer-killing molecules directly at that spot in a strength that does not harm other tissue. "This allows much lower dosages of light to be effective, so we can use agents that are more aggressive and not get the side effects of chemotherapy," Brewer said.

Researchers Shawn Swavey and Alvin Holder, along with students Lee Williams and Nathan Toft, working in the Brewer laboratory, developed the new mixed-metal supra-molecular complexes (medicines) that Brewer and Brenda Winkel, professor of biology, have proven are capable of photo-cleaving DNA, a normal therapeutic target in cells. The complexes are novel molecules whose chemistry allows the researchers to append them to other units.

At present, physicians use a chemical that is exposed to light and activates oxygen in photodynamic therapy. In tumor cells, oxygen is depleted rapidly, so those treatments can run out of oxygen and not kill the entire tumor, which can return. Brewer’s new systems don’t need oxygen, and the researchers can change the wavelength of light used. "We can fine tune the compound for light-absorbing characteristics," Brewer said. "By using a lower energy, we can better penetrate the body."

Brian Storrie, professor of biochemistry, and research scientist Maria Teresa Tarrago-Trani of biochemistry have developed the "rocket" with which to deliver the cancer-killing agents to particular organelles, or parts, in the cancer cells. "We have used a polypeptide that binds to a cell surface receptor, and that molecule is over-expressed for certain cancers. We can deliver photosynthesizers to the cancer," Storrie said.

The delivery vehicle is a B-fragment of a class of toxins known as shiga toxins. The A fragment is toxic, but the B fragment is a non-toxic delivery system. Storrie developed a way to use the B fragment to deliver the photo-dynamic agents developed by Brewer into the cells. This enables the researchers to target certain kinds of cancer cells that have receptors for the B fragment and deliver the agent to the exact spot in the cell so the supra-molecule can attack that part. This allows for the destruction of many parts in the cancerous cells.

Ken Meissner, senior research scientist with the Optical Science and Engineering Research (OSER) Center at Virginia Tech is developing the "detonation device" for the supra-molecules, which are nontoxic until hit by light. His specialty is the delivery of light to the correct tissues and to the supra-molecules positioned to kill the cells. Meissner develops better ways to get the light to the tumor and to understand how light passes through tissue

Together, the three-part attack opens up huge new areas for fighting cancer. "We can attach the delivery vehicles, change the light we need, change the biological target in the cells, and design a molecule that reacts with that part," Brewer said. In other words, Brewer can develop different molecules for different areas of the cells, Storrie can develop ways to get those molecules to the right places in the cells, and Meissner can develop methods to deliver the light needed to begin the killing of cancer cells. Or, Meissner can develop a new light-delivery system to work in a certain area, and then Brewer can develop a molecule that will kill tumor cells when excited with this light, and Storrie can get the molecule there.

The possibilities are greatly expanded by the variety of supra-molecules and the interactive work of these researchers. This exciting work is in the early stages, but the researchers hope it will someday be the basis for important strides in the treatment of cancer and other diseases.

The research is being done within the OSER Photodynamics Mini-center, a joint effort between the Carilion Biomedical Institute and Virginia Tech. Research groups collaborating under the mini-center include researchers Brewer, Storrie, Meissner, and Winkel, and Yannis Besieris and Brad Davis of electrical and computer engineering, Sun Young Kim of biochemistry, and Ed Wojcik of biology, all of Virginia Tech


Researcher contact information:
Karen Brewer 540-231-6579, kbrewer@vt.edu,
Brian Storrie 540-231-6434, storrie@vt.edu,
Ken Meissner 540-231-2512, cmeissne@vt.edu

PR CONTACT: Sally Harris 540-231-6759 slharris@vt.edu


Karen Brewer | EurekAlert!
Further information:
http://www.chem.vt.edu/chem-dept/brewer/brewer.html
http://www.biochem.vt.edu/faculty/storrie.html

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>