Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers developing new arsenal in war against cancer

16.12.2002


In the battle against cancer, Virginia Tech researchers have developed a potential warhead to better kill cancer cells, a new missile to deliver the warhead more efficiently to the diseased areas, and a new detonation device once the warhead is in place.



In a cross-disciplinary effort, the researchers, using photodynamic therapy (PDT), have obtained results in three different areas that, used together, have the possibility of providing more efficient, less invasive, and more specific treatments for cancer and other diseases such as age-related macular-degeneration.

A long-term concept has held that one should be able to use light-activated compounds to kill diseased cells, said Karen Brewer, associate professor of chemistry. The researchers have developed new tri-metallic supra-molecules that can be positioned in exact parts of cancer cells and excited by a therapeutic wavelength at which light propagates efficiently through tissue. Only when the light hits the supra-molecules do they become toxic to the cancer cells.


The advantages are many. The non-surgical process avoids the debilitating side effects of normal chemotherapy. The system enables the scientists to place the supra-molecules at specific locations in cells and to deliver light activating the cancer-killing molecules directly at that spot in a strength that does not harm other tissue. "This allows much lower dosages of light to be effective, so we can use agents that are more aggressive and not get the side effects of chemotherapy," Brewer said.

Researchers Shawn Swavey and Alvin Holder, along with students Lee Williams and Nathan Toft, working in the Brewer laboratory, developed the new mixed-metal supra-molecular complexes (medicines) that Brewer and Brenda Winkel, professor of biology, have proven are capable of photo-cleaving DNA, a normal therapeutic target in cells. The complexes are novel molecules whose chemistry allows the researchers to append them to other units.

At present, physicians use a chemical that is exposed to light and activates oxygen in photodynamic therapy. In tumor cells, oxygen is depleted rapidly, so those treatments can run out of oxygen and not kill the entire tumor, which can return. Brewer’s new systems don’t need oxygen, and the researchers can change the wavelength of light used. "We can fine tune the compound for light-absorbing characteristics," Brewer said. "By using a lower energy, we can better penetrate the body."

Brian Storrie, professor of biochemistry, and research scientist Maria Teresa Tarrago-Trani of biochemistry have developed the "rocket" with which to deliver the cancer-killing agents to particular organelles, or parts, in the cancer cells. "We have used a polypeptide that binds to a cell surface receptor, and that molecule is over-expressed for certain cancers. We can deliver photosynthesizers to the cancer," Storrie said.

The delivery vehicle is a B-fragment of a class of toxins known as shiga toxins. The A fragment is toxic, but the B fragment is a non-toxic delivery system. Storrie developed a way to use the B fragment to deliver the photo-dynamic agents developed by Brewer into the cells. This enables the researchers to target certain kinds of cancer cells that have receptors for the B fragment and deliver the agent to the exact spot in the cell so the supra-molecule can attack that part. This allows for the destruction of many parts in the cancerous cells.

Ken Meissner, senior research scientist with the Optical Science and Engineering Research (OSER) Center at Virginia Tech is developing the "detonation device" for the supra-molecules, which are nontoxic until hit by light. His specialty is the delivery of light to the correct tissues and to the supra-molecules positioned to kill the cells. Meissner develops better ways to get the light to the tumor and to understand how light passes through tissue

Together, the three-part attack opens up huge new areas for fighting cancer. "We can attach the delivery vehicles, change the light we need, change the biological target in the cells, and design a molecule that reacts with that part," Brewer said. In other words, Brewer can develop different molecules for different areas of the cells, Storrie can develop ways to get those molecules to the right places in the cells, and Meissner can develop methods to deliver the light needed to begin the killing of cancer cells. Or, Meissner can develop a new light-delivery system to work in a certain area, and then Brewer can develop a molecule that will kill tumor cells when excited with this light, and Storrie can get the molecule there.

The possibilities are greatly expanded by the variety of supra-molecules and the interactive work of these researchers. This exciting work is in the early stages, but the researchers hope it will someday be the basis for important strides in the treatment of cancer and other diseases.

The research is being done within the OSER Photodynamics Mini-center, a joint effort between the Carilion Biomedical Institute and Virginia Tech. Research groups collaborating under the mini-center include researchers Brewer, Storrie, Meissner, and Winkel, and Yannis Besieris and Brad Davis of electrical and computer engineering, Sun Young Kim of biochemistry, and Ed Wojcik of biology, all of Virginia Tech


Researcher contact information:
Karen Brewer 540-231-6579, kbrewer@vt.edu,
Brian Storrie 540-231-6434, storrie@vt.edu,
Ken Meissner 540-231-2512, cmeissne@vt.edu

PR CONTACT: Sally Harris 540-231-6759 slharris@vt.edu


Karen Brewer | EurekAlert!
Further information:
http://www.chem.vt.edu/chem-dept/brewer/brewer.html
http://www.biochem.vt.edu/faculty/storrie.html

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>