Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mouse model sheds light on lipoatrophic diabetes

16.12.2002


A collaboration of scientists from Harvard Medical School and Dartmouth Medical School has developed a new mouse model of lipoatrophic diabetes, and highlighted leptin therapy as a successful tool to combat this rare form of type II diabetes.



Lipoatrophic diabetes mellitus is characterized by a lack of subcutaneous fat (lipoatrophy), high blood sugar (hyperglycemia), and high blood insulin (hyperinsulinemia). Because patients with lipoatrophic diabetes are insulin-resistant, although high levels of insulin accumulate in their bloodstream, glucose is not efficiently delivered to their body’s cells, eventually resulting in severe eye, kidney, nerve and cardiovascular problems. A relatively rare disease in humans, lipoatrophic diabetes is thought to have a strong genetic component.

With the new model of lipoatrophic diabetes that Dr. Ronald Kahn and colleagues have developed, scientists are gaining valuable insight into the genetic pathway of this disease. "This model also points out how two genetic traits, neither of which alone can produce diabetes, can interact to produce a very severe diabetic state," states Dr. Kahn.


Dr. Kahn and colleagues were interested in elucidating the roles of the four insulin receptor substrate protein family members (IRS-1, -2, -3, and –4; the substrates for the insulin and insulin-like growth factor receptors) in insulin signal transduction and metabolism. IRS single knock-out mice had been previously made, and although the IRS-3-deficient mice showed no abnormalities, and the IRS-4-deficient mice showed only slight growth retardation and glucose intolerance, mice deficient in IRS-1 or IRS-2 displayed severe (but different) phenotypes.

Dr. Kahn and colleagues suspected that in IRS single knock-out mice the presence of the remaining three functional IRS genes could possibly compensate for the loss of one IRS gene and thereby obscure its true physiological function. Thus, the researchers generated two different strains of so-called "double knockout mice" – mice deficient in two genes: IRS-1 and IRS-3 or IRS-1 and IRS-4.

While the IRS-1/4 double knock-out mice were indistinguishable from the IRS-1 single knock-out mice (indicating no functional overlap between the IRS-1 and IRS-4 genes), the IRS-1/3 double knock-out mice had a markedly different phenotype. Like humans with lipoatrophic diabetes, the IRS-1/3 double knock-out mice displayed severe lipoatrophy, hyperglycemia, hyperinsulinemia, and insulin resistance. However, unlike previous models of lipoatrophic diabetes, the IRS-1/3 double knock-out mice did not accumulate fat in their liver and muscle, demonstrating that the increased deposition of fat in liver and muscle is not a requisite feature of lipoatrophic diabetes.

In addition to serving as a novel model of lipoatrophic diabetes, the IRS-1/3 double knock-out mice also reveal that IRS-1 and IRS-3 have partially redundant roles in mouse adipogenesis (fat development). Since humans do not have a functional copy of the IRS-3 gene, the authors propose that IRS-1 may thus play a more significant role in human adipogenesis and insulin homeostasis than it does in rodents, as there is no IRS-3 to compensate for mutations in, or loss of, IRS-1. In light of this, the IRS-1/3 double knock-out mice "may more closely mimic what happens in humans when the levels or sequence of IRS-1 is altered (since there is no IRS-3 to compensate)," explains Dr. Kahn.

Interestingly, Dr. Kahn and colleagues were able to completely reverse the hyperglycemia and hyperinsulinemia of the IRS-1/3 double knock-out mice within six days through the administration of the fat cell-secreted protein leptin – suggesting that leptin therapy may also prove successful in the treatment of humans with lipoatrophic diabetes.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>