Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mouse model sheds light on lipoatrophic diabetes

16.12.2002


A collaboration of scientists from Harvard Medical School and Dartmouth Medical School has developed a new mouse model of lipoatrophic diabetes, and highlighted leptin therapy as a successful tool to combat this rare form of type II diabetes.



Lipoatrophic diabetes mellitus is characterized by a lack of subcutaneous fat (lipoatrophy), high blood sugar (hyperglycemia), and high blood insulin (hyperinsulinemia). Because patients with lipoatrophic diabetes are insulin-resistant, although high levels of insulin accumulate in their bloodstream, glucose is not efficiently delivered to their body’s cells, eventually resulting in severe eye, kidney, nerve and cardiovascular problems. A relatively rare disease in humans, lipoatrophic diabetes is thought to have a strong genetic component.

With the new model of lipoatrophic diabetes that Dr. Ronald Kahn and colleagues have developed, scientists are gaining valuable insight into the genetic pathway of this disease. "This model also points out how two genetic traits, neither of which alone can produce diabetes, can interact to produce a very severe diabetic state," states Dr. Kahn.


Dr. Kahn and colleagues were interested in elucidating the roles of the four insulin receptor substrate protein family members (IRS-1, -2, -3, and –4; the substrates for the insulin and insulin-like growth factor receptors) in insulin signal transduction and metabolism. IRS single knock-out mice had been previously made, and although the IRS-3-deficient mice showed no abnormalities, and the IRS-4-deficient mice showed only slight growth retardation and glucose intolerance, mice deficient in IRS-1 or IRS-2 displayed severe (but different) phenotypes.

Dr. Kahn and colleagues suspected that in IRS single knock-out mice the presence of the remaining three functional IRS genes could possibly compensate for the loss of one IRS gene and thereby obscure its true physiological function. Thus, the researchers generated two different strains of so-called "double knockout mice" – mice deficient in two genes: IRS-1 and IRS-3 or IRS-1 and IRS-4.

While the IRS-1/4 double knock-out mice were indistinguishable from the IRS-1 single knock-out mice (indicating no functional overlap between the IRS-1 and IRS-4 genes), the IRS-1/3 double knock-out mice had a markedly different phenotype. Like humans with lipoatrophic diabetes, the IRS-1/3 double knock-out mice displayed severe lipoatrophy, hyperglycemia, hyperinsulinemia, and insulin resistance. However, unlike previous models of lipoatrophic diabetes, the IRS-1/3 double knock-out mice did not accumulate fat in their liver and muscle, demonstrating that the increased deposition of fat in liver and muscle is not a requisite feature of lipoatrophic diabetes.

In addition to serving as a novel model of lipoatrophic diabetes, the IRS-1/3 double knock-out mice also reveal that IRS-1 and IRS-3 have partially redundant roles in mouse adipogenesis (fat development). Since humans do not have a functional copy of the IRS-3 gene, the authors propose that IRS-1 may thus play a more significant role in human adipogenesis and insulin homeostasis than it does in rodents, as there is no IRS-3 to compensate for mutations in, or loss of, IRS-1. In light of this, the IRS-1/3 double knock-out mice "may more closely mimic what happens in humans when the levels or sequence of IRS-1 is altered (since there is no IRS-3 to compensate)," explains Dr. Kahn.

Interestingly, Dr. Kahn and colleagues were able to completely reverse the hyperglycemia and hyperinsulinemia of the IRS-1/3 double knock-out mice within six days through the administration of the fat cell-secreted protein leptin – suggesting that leptin therapy may also prove successful in the treatment of humans with lipoatrophic diabetes.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>