Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mouse model sheds light on lipoatrophic diabetes

16.12.2002


A collaboration of scientists from Harvard Medical School and Dartmouth Medical School has developed a new mouse model of lipoatrophic diabetes, and highlighted leptin therapy as a successful tool to combat this rare form of type II diabetes.



Lipoatrophic diabetes mellitus is characterized by a lack of subcutaneous fat (lipoatrophy), high blood sugar (hyperglycemia), and high blood insulin (hyperinsulinemia). Because patients with lipoatrophic diabetes are insulin-resistant, although high levels of insulin accumulate in their bloodstream, glucose is not efficiently delivered to their body’s cells, eventually resulting in severe eye, kidney, nerve and cardiovascular problems. A relatively rare disease in humans, lipoatrophic diabetes is thought to have a strong genetic component.

With the new model of lipoatrophic diabetes that Dr. Ronald Kahn and colleagues have developed, scientists are gaining valuable insight into the genetic pathway of this disease. "This model also points out how two genetic traits, neither of which alone can produce diabetes, can interact to produce a very severe diabetic state," states Dr. Kahn.


Dr. Kahn and colleagues were interested in elucidating the roles of the four insulin receptor substrate protein family members (IRS-1, -2, -3, and –4; the substrates for the insulin and insulin-like growth factor receptors) in insulin signal transduction and metabolism. IRS single knock-out mice had been previously made, and although the IRS-3-deficient mice showed no abnormalities, and the IRS-4-deficient mice showed only slight growth retardation and glucose intolerance, mice deficient in IRS-1 or IRS-2 displayed severe (but different) phenotypes.

Dr. Kahn and colleagues suspected that in IRS single knock-out mice the presence of the remaining three functional IRS genes could possibly compensate for the loss of one IRS gene and thereby obscure its true physiological function. Thus, the researchers generated two different strains of so-called "double knockout mice" – mice deficient in two genes: IRS-1 and IRS-3 or IRS-1 and IRS-4.

While the IRS-1/4 double knock-out mice were indistinguishable from the IRS-1 single knock-out mice (indicating no functional overlap between the IRS-1 and IRS-4 genes), the IRS-1/3 double knock-out mice had a markedly different phenotype. Like humans with lipoatrophic diabetes, the IRS-1/3 double knock-out mice displayed severe lipoatrophy, hyperglycemia, hyperinsulinemia, and insulin resistance. However, unlike previous models of lipoatrophic diabetes, the IRS-1/3 double knock-out mice did not accumulate fat in their liver and muscle, demonstrating that the increased deposition of fat in liver and muscle is not a requisite feature of lipoatrophic diabetes.

In addition to serving as a novel model of lipoatrophic diabetes, the IRS-1/3 double knock-out mice also reveal that IRS-1 and IRS-3 have partially redundant roles in mouse adipogenesis (fat development). Since humans do not have a functional copy of the IRS-3 gene, the authors propose that IRS-1 may thus play a more significant role in human adipogenesis and insulin homeostasis than it does in rodents, as there is no IRS-3 to compensate for mutations in, or loss of, IRS-1. In light of this, the IRS-1/3 double knock-out mice "may more closely mimic what happens in humans when the levels or sequence of IRS-1 is altered (since there is no IRS-3 to compensate)," explains Dr. Kahn.

Interestingly, Dr. Kahn and colleagues were able to completely reverse the hyperglycemia and hyperinsulinemia of the IRS-1/3 double knock-out mice within six days through the administration of the fat cell-secreted protein leptin – suggesting that leptin therapy may also prove successful in the treatment of humans with lipoatrophic diabetes.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>