Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural stem cells carry cancer-fighting protein to track and destroy brain tumor cells

16.12.2002


Researchers at Cedars-Sinai Medical Center’s Maxine Dunitz Neurosurgical Institute in Los Angeles have combined a special protein that targets cancer cells with neural stem cells (NSC) to track and attack malignant brain tumor cells. Results of their study appear in the Dec. 15 issue of Cancer Research.



Glioblastoma multiforme, or gliomas, are a particularly deadly type of brain tumor. They are highly invasive with poorly defined borders that intermingle with healthy brain tissue, making them nearly impossible to remove surgically without catastrophic consequences. Furthermore, cells separate from the main tumor and migrate to form satellites that escape treatment and often lead to recurrence.

Cedars-Sinai researchers recently published results of a study showing that neural stem cells have the ability to track glioma cells as they migrate. By engineering neural stem cells to secrete interleukin 12, they were able to elicit a local immune response that attacked cancer cells at the tumor site and in the satellites.


The current study used genetically engineered neural stem cells – cells that have the potential to differentiate into any of several types of cells of the central nervous system – to deliver a protein that is known for its cancer-fighting properties: tumor necrosis factor related apoptosis inducing ligand, or TRAIL. TRAIL has been shown to cause apoptosis, or cell death, in several types of cancers without causing toxicity to normal cells.

In vitro studies demonstrated that unmodified TRAIL cells quickly attacked human glioblastoma cells, with nearly all of the tumor cells being killed within 24 hours. TRAIL-secreting neural stem cells also resulted in significant cancer cell death, and the genetically engineered stem cells maintained their viability, strongly expressing TRAIL for as long as 10 days.

Similar results were found in vivo when human glioblastoma cells in mice were treated with TRAIL-secreting NSC and controls. A week after treatment, strong secretion of TRAIL was visible in the main tumor mass and in disseminating tumor pockets and satellites, indicating that the engineered cells were actively tracking tumor cells. The tumors treated with NSC-TRAIL had also decreased significantly in size, compared with the controls. Furthermore, while the treatment was dramatically effective in killing glioma cells, it was not toxic to normal brain tissue.

With its tumor-tracking capabilities and natural cancer-killing properties, experimental NSC-TRAIL combination may offer a new approach for treating gliomas.


Moneeb Ehtesham, M.D., a postdoctoral fellow at the Institute, is the article’s first author. John S. Yu, M.D., co-director of the Comprehensive Brain Tumor Program at the Institute, is senior author. The work was supported in part by National Institutes of Health grant NS02232 to Dr. Yu.

Cedars-Sinai is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, Cedars-Sinai has been named Southern California’s gold standard in health care in an independent survey. It is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthrough biomedical research and superlative medical education. Named one of the 100 "Most Wired" hospitals in health care in 2001, the Medical Center ranks among the top 10 non-university hospitals in the nation for its research activities.

Sandra Van | Van Communications
Further information:
http://www.csmc.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>