Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel gene therapy approach shows promise

16.12.2002


Vanderbilt University Medical Center investigators are reporting success with a novel gene therapy approach. Working with cells grown in the laboratory, the group is the first to repair a defective gene and demonstrate that the resulting protein product is functional, said Dr. Alfred L. George Jr., senior author of a study published Dec. 15 in the Journal of Clinical Investigation.



Although use of the approach in patients is still years in the future, the findings are an important step in showing that a particular method of gene repair is possible, said George, director of Vanderbilt’s division of Genetic Medicine.

"We have very solid evidence that we can repair messenger RNA (the copy of DNA that is used to manufacture proteins), and that the repair results in a protein that has normalized function," he said. "That’s a good sign and makes us optimistic about moving forward with this type of gene therapy strategy."


Gene therapy is a phrase that describes many different modes of gene-based treatments. The most widely used strategy seeks to put normal copies of a gene into cells with a defective gene. An alternative approach targets a defective gene for repair, either of the DNA itself or of the messenger RNA copy of the gene -- the strategy favored by George’s group. Repairing messenger RNA offers advantages over other types of gene therapy, George said, because it works specifically in cells that have messenger RNA copies of the gene. Cells that are not actively using the targeted gene will not contain any messenger RNA copies to be repaired.

"We think this approach may have a niche. It could be useful for any inherited disease, but it may have a special ability to correct a problem in a dominant disorder, George said.

The RNA repair method studied by George and colleagues employs molecules called ribozymes -- repair machines that can be engineered to correct a defect in a selected messenger RNA. The current work targets for repair a mutation that causes myotonia congenita, an inherited muscle disease with symptoms including muscle stiffness. Because myotonia congenita is not a debilitating disease, gene therapy may not be appropriate for some patients, George said, but the disease serves as an excellent model for testing ribozymes as potential gene therapeutics.

"We know a great deal about myotonia congenita," George said. "We know about the genetics and the physiology, and we have cell culture and animal models. We have many experimental armaments to study the disease."

In addition, George said, myotonia congenita provides a good test case for more severe inherited muscle diseases, such as muscular dystrophy and related disorders.

Myotonia congenita is caused by mutations in chloride channels -- donut-like pores that allow chloride ions to pass across the cell membrane. Because chloride channels are important participants in the contraction-relaxation cycle of skeletal muscle, defects in these proteins affect muscle relaxation and cause muscle stiffness.

Over 80 different myotonia congenita-associated chloride channel mutations have been identified, George said. His team targeted one of these for repair, a mutation that George and colleagues first identified in a Pennsylvania dog named Sparky.

Dr. Christopher Rogers, a former graduate student in George’s laboratory, engineered ribozymes to correct the "Sparky" defect and then introduced the ribozymes into cells harboring the mutant chloride channels. He demonstrated that the ribozymes could indeed repair the messenger RNA for the defective channels and that the resulting repaired proteins had normal chloride channel function. The repair was not effective in all cells, George said, but in a small percentage of cells, chloride channel function was completely restored.

"We know now that the ribozyme method can work; it’s effective at producing a protein with completely normal function," George said. "It would be nice if we knew it worked in the dog, and that’s the next step."

The investigators will continue studies in cells to improve the efficiency of the method before they test it in a group of Sparky’s descendants -- a dog model of myotonia congenita.


Other contributors to the Journal of Clinical Investigation study include Drs. Carlos G. Vanoye and Bruce A. Sullenger. The work was supported by the National Institutes of Health and the Muscular Dystrophy Association.

Leigh MacMillan | EurekAlert!
Further information:
http://www.mc.vanderbilt.edu/reporter/

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>