Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Children’s Hospital Boston researchers regenerate zebrafish heart muscle

13.12.2002


Work has implications for repairing human heart muscle after heart attacks



Experiments on zebrafish provide important clues that could eventually lead to the ability to regenerate damaged human heart muscle, say researchers from the Howard Hughes Medical Institute at Children’s Hospital Boston. Reporting in the Dec. 13 issue of Science, a team led by HHMI investigator Mark T. Keating, MD, senior associate, department of Cardiology, showed for the first time that zebrafish can regenerate heart muscle within two months after a severe injury. The team also identified a possible genetic and molecular model for regeneration in zebrafish that could help direct further research in humans. The findings, while still in an early stage, might someday benefit millions of people who suffer heart attacks or experience other forms of cardiac injury.

The zebrafish is the subject of active study because of its ability to regenerate spinal cord, retina, and fins. This finding points to the study of zebrafish heart regeneration as a means to understand and reduce cardiac injury in humans. When a human heart is injured, it cannot "grow back" the damaged muscle, which is instead replaced by scar tissue. Too much scarring can impair the heart’s ability to pump and can lead to life-threatening arrhythmias. Keating and his colleagues believe that zebrafish, unlike humans, have especially vigorous development of new heart-muscle cells, or cardiomyocytes. This proliferation of cells regenerates the heart muscle with little or no scarring.


"We think that there’s a balance between scar formation and regeneration -- if you regenerate, you don’t scar, but if you can’t regenerate, you scar," Keating said. "If you inhibit cell proliferation in the zebrafish, the heart doesn’t regenerate and instead scars, like in humans. The implication, which isn’t proven, but is quite exciting, is that by enhancing human cardiomyocyte proliferation after heart injury, one may be able to enhance cardiac regeneration and reduce cardiac scarring."

In the experiments, Keating and co-authors Kenneth D. Poss and Lindsay G. Wilson, also of HHMI and Children’s Hospital Boston, injured the hearts of adult zebrafish by surgically removing 20 percent of the muscle from the heart’s lower chamber, or ventricle. They then returned the animals to water (most survived and resumed swimming) and examined their hearts at regular intervals. They compared their observations with those of a control group of zebrafish that had their hearts removed and returned to their bodies uninjured.

Within a week, the zebrafish with heart injuries were as active and swam as well as the zebrafish whose hearts were uninjured. Within two months, most injured ventricles had regained their size and shape and appeared to be contracting normally. Digitally aided measurements of the ventricles’ surface area showed complete recovery of heart muscle. Cardiomyocytes rapidly increased in number at the edge of the wound, first forming a layer to restore the ventricle wall, and then expanding this new layer of muscle.

Using techniques of cell biology, Keating’s team also showed that zebrafish with a genetic mutation affecting the enzyme mitotic checkpoint kinase (Mps1) no longer had rapid heart-cell formation and lost their ability to regenerate heart muscle. Instead, they had muscle scarring, as humans do. However, Keating emphasized this mutation is not necessarily the mechanism that inhibits cell proliferation in humans.

The next research steps will be to further investigate what genes are required for cardiomyocyte proliferation and heart regeneration in zebrafish, and to seek their counterparts in humans. Two major questions must then be answered. "Can you enhance cardiomyocyte proliferation in humans? That’s not known," Keating said. "And, if you enhance proliferation, will it induce cardiac regeneration?"

Many amphibians, such as newts, lizards, and salamanders, are also able to regenerate organs and tissues, whereas mammals, including humans, are not. But the zebrafish is an especially valuable model for studying the molecular mechanisms that trigger regeneration, because its genome shares many characteristics with the human genome. The small tropical fish also reproduces rapidly, facilitating genetic studies over multiple generations. A scientific push to sequence the zebrafish genome is under way at Children’s Hospital Boston and elsewhere.

"The field of regeneration has been of interest for thousands of years, but it hasn’t really entered the mainstream of molecular biology," said Keating. "The reason, in my opinion, is that the tools haven’t been there. We decided to create the field of zebrafish regeneration genetics."


Children’s Hospital Boston is home to the world’s largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults for over 100 years. More than 500 scientists, including seven members of the National Academy of Sciences, nine members of the Institute of Medicine and nine members of the Howard Hughes Medical Institute comprise Children’s research community. Founded in 1869 as a 20-bed hospital for children, Children’s Hospital Boston today is a 300-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. It is also the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital visit: www.childrenshospital.org.

This research was funded by the Helen Hay Whitney Foundation and grants from the National Heart, Lung, and Blood Institute.


Elizabeth Andrews | EurekAlert!
Further information:
http://www.childrenshospital.org/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>