Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Dose dense’ chemotherapy improves survival in breast cancer patients

12.12.2002


A new clinical trial has shown that reducing the interval between successive doses of a commonly used chemotherapy regimen improves survival in women whose breast cancer has spread to the lymph nodes. While previous research has evaluated the use of various forms of "dose dense" chemotherapy, this is the first major controlled study to show a clear survival benefit for women with node-positive breast cancer. The study was conducted by Cancer and Leukemia Group B (CALGB) for the Breast Cancer Intergroup, a consortium of National Cancer Institute (NCI)-sponsored Cooperative Clinical Trials Groups, and is being presented today at the 25th Annual San Antonio Breast Cancer Symposium.



"This study suggests that many women with breast cancer may benefit from chemotherapy administered on a condensed schedule," said Marc L. Citron, M.D., Albert Einstein College of Medicine, who is the lead investigator of the study. "With the availability of new drugs to control one of the most serious side effects of chemotherapy administration, we can further increase the chances of survival for women with breast cancer." The dose dense regimen was made tolerable for patients because of the drug filgrastim, which helps prevent neutropenia, a serious complication of chemotherapy.

The researchers found that two dose dense regimens provided significantly higher disease-free survival rates than two regimens using conventional dosing, and that efficacy did not differ between the two dose dense regimens. Among patients on the dose dense regimens, disease-free survival was 82 percent after four years, compared to 75 percent for those who received conventional therapy. This difference corresponded to a 26 percent overall reduction in the risk of cancer recurrence. The findings confirm the predictions of a mathematical model developed in the1980s that suggested the value of increased dose density, which was the impetus for the study.


"The improvement in outcome could well represent an important advance in our knowledge of the biology of breast cancer and how best to treat it," said Larry Norton, M.D., of Memorial Sloan-Kettering Cancer Center, senior investigator of the study and one of the developers of the original model. "If confirmed and extended by additional research, this finding could positively affect the care of thousands of patients throughout the world with breast cancer and perhaps, eventually, other diseases."

Researchers tested both dose dense and conventional chemotherapy regimens in 1,973 women with node-positive primary breast cancer and no other metastases. Following surgical removal of their tumors, the women were assigned to one of four treatment regimens involving the standard chemotherapy drugs doxorubicin (A), paclitaxel (T), and cyclophosphamide (C):

- Sequential administration (A followed by T, followed by C) in three-week intervals (conventional)

- Sequential administration in two-week intervals, with filgrastim (dose dense)

- Concurrent administration (A and C together, followed by T) in three-week intervals

- Concurrent administration in two-week intervals, with filgrastim (dose dense)

Since frequent administration of chemotherapy can result in a condition called neutropenia, a decline in the number of a certain type of white blood cells, the researchers administered filgrastim to patients on the dose dense regimens. Also known as the granulocyte-colony stimulating factor (G-CSF), filgrastim helps prevent neutropenia by stimulating the formation of white blood cells called neutrophils. Without it, chemotherapy dosing frequency is limited to longer intervals.

"It is too soon to determine whether a dose dense chemotherapy regimen with filgrastim should be the new standard of care," said Jeffrey Abrams, the oncologist in charge of breast cancer treatment trials at NCI. "However, the reduced risk of cancer recurrence and the low occurrence of side effects are encouraging, and further follow-up as well as other studies testing this approach will hopefully confirm the findings."

In addition to improved disease-free survival, the study indicated that dose dense chemotherapy may also lead to higher overall survival rates. After three years, 92 percent of patients on the dose dense therapy were alive, compared to 90 percent of those on the conventionally administered regimens. This difference corresponded to a 31 percent overall reduction in the risk of death. However, the study authors cautioned that additional follow-up is necessary to confirm this overall survival benefit.

Side effects were found to be no more severe among patients on the dose dense regimens than among those on the conventional treatments, and patients on the dose dense regimens suffered fewer cases of neutropenia. In addition, the study showed that sequential administration produced slightly fewer side effects than the concurrent regimens, with equal efficacy.

Since the mathematical model that led to this study applies to most cancer types and many anti-cancer drugs, the researchers hypothesize that future clinical trials could examine the benefits of dose dense chemotherapy using other drugs and in other types of cancer.

NCI Press Officer | EurekAlert!
Further information:
http://cancer.gov

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>