Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


’Dose dense’ chemotherapy improves survival in breast cancer patients


A new clinical trial has shown that reducing the interval between successive doses of a commonly used chemotherapy regimen improves survival in women whose breast cancer has spread to the lymph nodes. While previous research has evaluated the use of various forms of "dose dense" chemotherapy, this is the first major controlled study to show a clear survival benefit for women with node-positive breast cancer. The study was conducted by Cancer and Leukemia Group B (CALGB) for the Breast Cancer Intergroup, a consortium of National Cancer Institute (NCI)-sponsored Cooperative Clinical Trials Groups, and is being presented today at the 25th Annual San Antonio Breast Cancer Symposium.

"This study suggests that many women with breast cancer may benefit from chemotherapy administered on a condensed schedule," said Marc L. Citron, M.D., Albert Einstein College of Medicine, who is the lead investigator of the study. "With the availability of new drugs to control one of the most serious side effects of chemotherapy administration, we can further increase the chances of survival for women with breast cancer." The dose dense regimen was made tolerable for patients because of the drug filgrastim, which helps prevent neutropenia, a serious complication of chemotherapy.

The researchers found that two dose dense regimens provided significantly higher disease-free survival rates than two regimens using conventional dosing, and that efficacy did not differ between the two dose dense regimens. Among patients on the dose dense regimens, disease-free survival was 82 percent after four years, compared to 75 percent for those who received conventional therapy. This difference corresponded to a 26 percent overall reduction in the risk of cancer recurrence. The findings confirm the predictions of a mathematical model developed in the1980s that suggested the value of increased dose density, which was the impetus for the study.

"The improvement in outcome could well represent an important advance in our knowledge of the biology of breast cancer and how best to treat it," said Larry Norton, M.D., of Memorial Sloan-Kettering Cancer Center, senior investigator of the study and one of the developers of the original model. "If confirmed and extended by additional research, this finding could positively affect the care of thousands of patients throughout the world with breast cancer and perhaps, eventually, other diseases."

Researchers tested both dose dense and conventional chemotherapy regimens in 1,973 women with node-positive primary breast cancer and no other metastases. Following surgical removal of their tumors, the women were assigned to one of four treatment regimens involving the standard chemotherapy drugs doxorubicin (A), paclitaxel (T), and cyclophosphamide (C):

- Sequential administration (A followed by T, followed by C) in three-week intervals (conventional)

- Sequential administration in two-week intervals, with filgrastim (dose dense)

- Concurrent administration (A and C together, followed by T) in three-week intervals

- Concurrent administration in two-week intervals, with filgrastim (dose dense)

Since frequent administration of chemotherapy can result in a condition called neutropenia, a decline in the number of a certain type of white blood cells, the researchers administered filgrastim to patients on the dose dense regimens. Also known as the granulocyte-colony stimulating factor (G-CSF), filgrastim helps prevent neutropenia by stimulating the formation of white blood cells called neutrophils. Without it, chemotherapy dosing frequency is limited to longer intervals.

"It is too soon to determine whether a dose dense chemotherapy regimen with filgrastim should be the new standard of care," said Jeffrey Abrams, the oncologist in charge of breast cancer treatment trials at NCI. "However, the reduced risk of cancer recurrence and the low occurrence of side effects are encouraging, and further follow-up as well as other studies testing this approach will hopefully confirm the findings."

In addition to improved disease-free survival, the study indicated that dose dense chemotherapy may also lead to higher overall survival rates. After three years, 92 percent of patients on the dose dense therapy were alive, compared to 90 percent of those on the conventionally administered regimens. This difference corresponded to a 31 percent overall reduction in the risk of death. However, the study authors cautioned that additional follow-up is necessary to confirm this overall survival benefit.

Side effects were found to be no more severe among patients on the dose dense regimens than among those on the conventional treatments, and patients on the dose dense regimens suffered fewer cases of neutropenia. In addition, the study showed that sequential administration produced slightly fewer side effects than the concurrent regimens, with equal efficacy.

Since the mathematical model that led to this study applies to most cancer types and many anti-cancer drugs, the researchers hypothesize that future clinical trials could examine the benefits of dose dense chemotherapy using other drugs and in other types of cancer.

NCI Press Officer | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>