Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rush begins use of magnetic guided navigation system

12.12.2002


Rush is first site in the Chicago area to obtain the stereotaxis technology and one of only two in the world with an emphasis on neurosurgical applications



Neurosurgeons at Rush-Presbyterian-St. Luke’s Medical Center have become the first in the Chicago area to use a radically new, magnetically controlled system to enter the brain and its vascular system to treat a variety of diseases without surgically opening up the skull and brain.

"Magnet-guided neurosurgery allows us to use a guidewire and catheter to manipulate surgical tools within the brain in ways that previously were impossible," said Dr. Leonard Cerullo, chairman of the department of Neurosurgery at Rush and founder, president and medical director of the Chicago Institute of Neurosurgery and Neuroresearch (CINN) medical group.


"Because we can enter the brain through a blood vessel that is accessed through a small incision in the upper thigh, we have the potential to substantially reduce the need to surgically open the skull and disrupt brain tissue in order to repair aneurysms and deliver stroke therapies. We hope this will result in more effective treatment, reduced costs and swifter recovery times," he noted.

The first patient, a 48-year-old man from Chicago, was successfully treated with the technology on Tuesday, December 10. He suffered from headaches and double vision caused by malformed blood vessels in the back of his head. Swelling of the blood vessels put pressure on the brain and caused the double vision.

The system uses a magnetic field, controlled by the physician using point and click devices, to deflect the tip of a specially designed guidewire or catheter that is mechanically pushed or pulled through the body. Unlike existing guidewires and catheters, the new guidewires and catheters can be advanced through a vessel as small as one millimeter and are designed to be flexible enough to make a turn angle sharper than 90 degrees.

Initially, neurosurgeons at Rush will use the system in a clinical trial to access clogged vessels in the brains of newly diagnosed stroke patients. They also plan clinical research protocols to treat brain aneurysms and tumors.

"Our clinical research should lead to new ways to treat brain aneurysms by directing a catheter into the aneurysm, holding it in place, and then injecting a special material to obliterate it," said Dr. Demetrius Lopes, CINN’s neuroendovascular specialist who will be the principal neurosurgeon using the technology.

In the spine, the catheter’s flexibility is expected to enable neurosurgeons to navigate multiple nerve routes with one needle-stick entry point instead of the current procedure that requires one-needle stick entry point per nerve route, which is a painful and time-consuming process.

The technology is also expected to advance Rush’s research efforts in restorative neurosurgery to treat movement disorders (Parkinson’s disease, epilepsy), pain syndromes and mental illnesses. This will potentially involve using the magnetic navigation technology to accurately place tiny electrodes, stimulators or recording devices into the brain to modify the brain’s electrical signals in order to modify behavior, alter the natural history of certain diseases or to deliver therapeutic agents to specific areas of the brain. Currently, neurosurgeons must enter the brain through a hole in the skull and manually push a rigid needle in a straight-line route through any brain tissue on its way to the target area.

Interventional cardiologists at Rush will also use the system to participate in trials intended to dramatically expand the ability of cardiologists to open up vessels supplying blood to the heart. "Many blockages, due to their severity or location, currently can only be treated using drugs or cardiac bypass surgery," said cardiologist Dr. Gary Schaer, director of the Cardiac Catheterization Laboratories at Rush.

Rush recently invested more than $2 million in facilities and to acquire the Telstar interventional workstation manufactured by Stereotaxis, Inc., of St. Louis. The technology combines computer-controlled magnets, a flexible catheterization system and an X-ray fluoroscope that permits surgeons to view organs and medical devices in the body. The Food and Drug Administration has approved the system for use in clinical trials to test new ways to navigate guidewires and catheters within the heart and brain.

Rush is only the third site in the country to obtain the technology. Other centers with the magnetic navigation technology are Washington University in St. Louis and the University of Oklahoma in Oklahoma City, Okla.

Patients from all of CINNs seven offices will be able to be treated at the new Rush facility. CINN is the largest neurosurgical group practice in the Midwest. All of the 22 CINN neurosurgeons are on the faculty of Rush Medical College.

John Pontarelli | EurekAlert!

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>