Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rush begins use of magnetic guided navigation system


Rush is first site in the Chicago area to obtain the stereotaxis technology and one of only two in the world with an emphasis on neurosurgical applications

Neurosurgeons at Rush-Presbyterian-St. Luke’s Medical Center have become the first in the Chicago area to use a radically new, magnetically controlled system to enter the brain and its vascular system to treat a variety of diseases without surgically opening up the skull and brain.

"Magnet-guided neurosurgery allows us to use a guidewire and catheter to manipulate surgical tools within the brain in ways that previously were impossible," said Dr. Leonard Cerullo, chairman of the department of Neurosurgery at Rush and founder, president and medical director of the Chicago Institute of Neurosurgery and Neuroresearch (CINN) medical group.

"Because we can enter the brain through a blood vessel that is accessed through a small incision in the upper thigh, we have the potential to substantially reduce the need to surgically open the skull and disrupt brain tissue in order to repair aneurysms and deliver stroke therapies. We hope this will result in more effective treatment, reduced costs and swifter recovery times," he noted.

The first patient, a 48-year-old man from Chicago, was successfully treated with the technology on Tuesday, December 10. He suffered from headaches and double vision caused by malformed blood vessels in the back of his head. Swelling of the blood vessels put pressure on the brain and caused the double vision.

The system uses a magnetic field, controlled by the physician using point and click devices, to deflect the tip of a specially designed guidewire or catheter that is mechanically pushed or pulled through the body. Unlike existing guidewires and catheters, the new guidewires and catheters can be advanced through a vessel as small as one millimeter and are designed to be flexible enough to make a turn angle sharper than 90 degrees.

Initially, neurosurgeons at Rush will use the system in a clinical trial to access clogged vessels in the brains of newly diagnosed stroke patients. They also plan clinical research protocols to treat brain aneurysms and tumors.

"Our clinical research should lead to new ways to treat brain aneurysms by directing a catheter into the aneurysm, holding it in place, and then injecting a special material to obliterate it," said Dr. Demetrius Lopes, CINN’s neuroendovascular specialist who will be the principal neurosurgeon using the technology.

In the spine, the catheter’s flexibility is expected to enable neurosurgeons to navigate multiple nerve routes with one needle-stick entry point instead of the current procedure that requires one-needle stick entry point per nerve route, which is a painful and time-consuming process.

The technology is also expected to advance Rush’s research efforts in restorative neurosurgery to treat movement disorders (Parkinson’s disease, epilepsy), pain syndromes and mental illnesses. This will potentially involve using the magnetic navigation technology to accurately place tiny electrodes, stimulators or recording devices into the brain to modify the brain’s electrical signals in order to modify behavior, alter the natural history of certain diseases or to deliver therapeutic agents to specific areas of the brain. Currently, neurosurgeons must enter the brain through a hole in the skull and manually push a rigid needle in a straight-line route through any brain tissue on its way to the target area.

Interventional cardiologists at Rush will also use the system to participate in trials intended to dramatically expand the ability of cardiologists to open up vessels supplying blood to the heart. "Many blockages, due to their severity or location, currently can only be treated using drugs or cardiac bypass surgery," said cardiologist Dr. Gary Schaer, director of the Cardiac Catheterization Laboratories at Rush.

Rush recently invested more than $2 million in facilities and to acquire the Telstar interventional workstation manufactured by Stereotaxis, Inc., of St. Louis. The technology combines computer-controlled magnets, a flexible catheterization system and an X-ray fluoroscope that permits surgeons to view organs and medical devices in the body. The Food and Drug Administration has approved the system for use in clinical trials to test new ways to navigate guidewires and catheters within the heart and brain.

Rush is only the third site in the country to obtain the technology. Other centers with the magnetic navigation technology are Washington University in St. Louis and the University of Oklahoma in Oklahoma City, Okla.

Patients from all of CINNs seven offices will be able to be treated at the new Rush facility. CINN is the largest neurosurgical group practice in the Midwest. All of the 22 CINN neurosurgeons are on the faculty of Rush Medical College.

John Pontarelli | EurekAlert!

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>