Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rush begins use of magnetic guided navigation system

12.12.2002


Rush is first site in the Chicago area to obtain the stereotaxis technology and one of only two in the world with an emphasis on neurosurgical applications



Neurosurgeons at Rush-Presbyterian-St. Luke’s Medical Center have become the first in the Chicago area to use a radically new, magnetically controlled system to enter the brain and its vascular system to treat a variety of diseases without surgically opening up the skull and brain.

"Magnet-guided neurosurgery allows us to use a guidewire and catheter to manipulate surgical tools within the brain in ways that previously were impossible," said Dr. Leonard Cerullo, chairman of the department of Neurosurgery at Rush and founder, president and medical director of the Chicago Institute of Neurosurgery and Neuroresearch (CINN) medical group.


"Because we can enter the brain through a blood vessel that is accessed through a small incision in the upper thigh, we have the potential to substantially reduce the need to surgically open the skull and disrupt brain tissue in order to repair aneurysms and deliver stroke therapies. We hope this will result in more effective treatment, reduced costs and swifter recovery times," he noted.

The first patient, a 48-year-old man from Chicago, was successfully treated with the technology on Tuesday, December 10. He suffered from headaches and double vision caused by malformed blood vessels in the back of his head. Swelling of the blood vessels put pressure on the brain and caused the double vision.

The system uses a magnetic field, controlled by the physician using point and click devices, to deflect the tip of a specially designed guidewire or catheter that is mechanically pushed or pulled through the body. Unlike existing guidewires and catheters, the new guidewires and catheters can be advanced through a vessel as small as one millimeter and are designed to be flexible enough to make a turn angle sharper than 90 degrees.

Initially, neurosurgeons at Rush will use the system in a clinical trial to access clogged vessels in the brains of newly diagnosed stroke patients. They also plan clinical research protocols to treat brain aneurysms and tumors.

"Our clinical research should lead to new ways to treat brain aneurysms by directing a catheter into the aneurysm, holding it in place, and then injecting a special material to obliterate it," said Dr. Demetrius Lopes, CINN’s neuroendovascular specialist who will be the principal neurosurgeon using the technology.

In the spine, the catheter’s flexibility is expected to enable neurosurgeons to navigate multiple nerve routes with one needle-stick entry point instead of the current procedure that requires one-needle stick entry point per nerve route, which is a painful and time-consuming process.

The technology is also expected to advance Rush’s research efforts in restorative neurosurgery to treat movement disorders (Parkinson’s disease, epilepsy), pain syndromes and mental illnesses. This will potentially involve using the magnetic navigation technology to accurately place tiny electrodes, stimulators or recording devices into the brain to modify the brain’s electrical signals in order to modify behavior, alter the natural history of certain diseases or to deliver therapeutic agents to specific areas of the brain. Currently, neurosurgeons must enter the brain through a hole in the skull and manually push a rigid needle in a straight-line route through any brain tissue on its way to the target area.

Interventional cardiologists at Rush will also use the system to participate in trials intended to dramatically expand the ability of cardiologists to open up vessels supplying blood to the heart. "Many blockages, due to their severity or location, currently can only be treated using drugs or cardiac bypass surgery," said cardiologist Dr. Gary Schaer, director of the Cardiac Catheterization Laboratories at Rush.

Rush recently invested more than $2 million in facilities and to acquire the Telstar interventional workstation manufactured by Stereotaxis, Inc., of St. Louis. The technology combines computer-controlled magnets, a flexible catheterization system and an X-ray fluoroscope that permits surgeons to view organs and medical devices in the body. The Food and Drug Administration has approved the system for use in clinical trials to test new ways to navigate guidewires and catheters within the heart and brain.

Rush is only the third site in the country to obtain the technology. Other centers with the magnetic navigation technology are Washington University in St. Louis and the University of Oklahoma in Oklahoma City, Okla.

Patients from all of CINNs seven offices will be able to be treated at the new Rush facility. CINN is the largest neurosurgical group practice in the Midwest. All of the 22 CINN neurosurgeons are on the faculty of Rush Medical College.

John Pontarelli | EurekAlert!

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>