Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC scientists provide first images of HIV in living cells

12.12.2002


In stunning color images using time-lapse microscopy, researchers at the University of Illinois at Chicago have for the first time captured the very earliest stages of HIV infection in living cells.



The researchers filmed individual HIV particles as they traveled to the nucleus of a human cell and began taking over its genetic machinery -- the first step in the destruction of the body’s immune system that leads to AIDS.

The movies not only offer tantalizing glimpses of HIV in action, but provide visual proof that HIV enlists the assistance of its host to wreak havoc on the body’s defenses.


The virus can be seen traveling along a part of the host cell’s own skeletal framework of microtubules as it makes its way from the outer membrane to the nucleus. The virus hitches a ride aboard a multi-unit protein called dynein, commonly referred to as a molecular motor.

"Dynein is like a tractor trailer, the microtubules are the highway, and the HIV particles are the cargo," said David McDonald, assistant professor of microbiology and immunology at UIC.

McDonald and Thomas Hope, associate professor of microbiology and immunology at UIC, are co-authors of the study, which appeared Nov. 11 in the Journal of Cell Biology. Science magazine named the paper an "editor’s choice" in its Nov. 22 issue, and it will be featured in an upcoming issue of Nature Cell Biology.

An editorial accompanying the paper said, "With the powerful approaches developed by McDonald et al. and the incredible progress in imaging single fluorescent molecules in living cells, ... important and fascinating questions of HIV cell biology can now be addressed."

Until recently, little was known about how HIV enters a cell. The virus is made of an outer shell, or envelope, and a core, referred to as a particle, which is composed of proteins and genetic material. When the virus attacks an immune cell, it fuses with the cell’s membrane and releases its particle core inside.

But what those particles do once they are inside -- in particular, how they arrive at the nucleus to hijack the cell’s genetic machinery and begin reproducing their own DNA -- had remained a mystery.

The tiny particles, only about 12 millionths of a centimeter in diameter, have to cross a distance that is up to 500 times their size to reach the nucleus. Moreover, the way is blocked by all kinds of cellular structures, from energy-generating mitochondria to packets of proteins. How do the particles get through this obstacle course?

The researchers were able to visualize individual HIV particles by attaching green fluorescent protein to one of their components. Derived from jellyfish, the protein has only recently been discovered as a means of tagging individual molecules inside a living cell. When blue light shines on the protein, it gives off a green glow.

The researchers also made the microtubules of the host cells glow a deep red by incorporating another fluorescent protein into their building blocks.

Pictures of living cells infected with HIV were taken under a microscope at intervals as short as 15 seconds, creating a movie of the viruses’ activities as they traversed the microtubular highway toward their destination in the nucleus.

"They don’t make a beeline for the nucleus," McDonald said. "Their progress is somewhat halting. They appear to jump from one microtubule to another, moving in a jagged path, even sometimes moving backward. But they eventually reach their destination."

The journey to the nucleus takes about two to four hours, he said.

At the periphery of the nuclei, the scientists saw the viruses form complexes with genetic material of the host cells -- appropriating the tools that HIV needs to reproduce.

Dynein’s role was confirmed by injecting an off-the-shelf antibody into the cells that prevents the molecular motors from working. When the motors stop, the viral particles are found scattered throughout the host cells, not congregated around the cells’ nuclei.

The paper represents four years of research, begun when Hope was a researcher at the Salk Institute for Biological Sciences in La Jolla, Calif.

"This work is confirmation of the dynamic new methods we are using to study HIV," Hope said. "We hope this basic research will one day lead to new targets for drug therapy in the longstanding battle against AIDS."

Hope said he plans to extend the technique developed in this HIV research to study Ebola, one of the deadliest viruses known and one that could be used in a bioterrorist attack. Little is understood about Ebola’s basic biology, including how it enters cells.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>