Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kefir Protects Against Mutations

12.12.2002


Scientists all over the world hunt for anti-mutagens, substances protecting against mutations. Where they can find them? It was suggested and later proved that most anti-mutagens are located in those organs and biological liquids, which are connected with the process of reproduction. The latter is the key point in the life cycle, in which genome disorders should be minimal. Anti-mutagens were found in seeds, spores, eggs, and sperm. It was also established that anti-mutagens are formed in certain bacteria. Then, microbiologists have become curious about a possibility of obtaining and using bacterial mutagens in medicine.



Among wonderful bacteria producing anti-mutagens, there are bifidobacteria and lactic-acid bacteria that are very beneficial for health. They can be already called "domestic" because of their wide application in producing various milk, meat, and special fermented foodstuffs for people and animals. Bifidobacteria are the main component of a natural microflora of the intestine and produce lactic, acetic, and butyric acids that kill pathogenic and putrefactive bacteria. The same acids are produced by lactic bacteria inhabiting fermented milk.

Experiments conducted by L.I. Vorob’eva and S.K. Abilev have shown that chemical mutagens kept in fermented milk lose their dangerous properties. Lactic-acid bacteria attack mutagens in different ways. They produce proteins-enzymes and lactic, butyric, and acetic acids, which suppress the activity of mutagens. Some lactic-acid bacteria are capable of forming chemical bounds with mutagens. Sometimes, bacterial cells act as anti-oxidants and remove free radicals.


On the basis of data obtained, the authors conclude that lactic-acid bacteria and bifidobacteria neutralize mutagens, which are dangerous for the genome, within the alimentary canal. It should be mentioned that mutagens may often act as carcinogens, i.e., cause cancer. Therefore, the bacteria and their metabolites protect not only against mutations, but also against cancer. The scientists suggest that they can also neutralize carcinogenic agents and hinder the growth of a newly formed tumour. This is proven by the experiments on rats as well as by medical observations: people who take fermented milk products are less subjected to intestine cancer.

Another valuable group of microorganisms is propionic bacteria, which are used in the production of vitamin B12, bakery, and in pharmaceutics. They live in cheese and milk, and some species - on the skin. The scientists have established that these also act against mutagens.

Protective properties are also found in bacterium enterococcus that inhabits the intestine. It produces proteins that make DNA less damageable.

Fortunately, the anti-mutagenic properties of bacteria are universal. So, using bacteria, people can obtain anti-mutagenic and anti-carcinogenic agents, which may become a basis for creating new food supplements and drugs. And including kefir, yogurt, and other fermented milk products in daily menu is very advisable for everyone.

Nadejda Markina | alfa
Further information:
http://www.informnauka.ru/eng/2002/2002-12-11-02_268_e.htm

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>