Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kefir Protects Against Mutations

12.12.2002


Scientists all over the world hunt for anti-mutagens, substances protecting against mutations. Where they can find them? It was suggested and later proved that most anti-mutagens are located in those organs and biological liquids, which are connected with the process of reproduction. The latter is the key point in the life cycle, in which genome disorders should be minimal. Anti-mutagens were found in seeds, spores, eggs, and sperm. It was also established that anti-mutagens are formed in certain bacteria. Then, microbiologists have become curious about a possibility of obtaining and using bacterial mutagens in medicine.



Among wonderful bacteria producing anti-mutagens, there are bifidobacteria and lactic-acid bacteria that are very beneficial for health. They can be already called "domestic" because of their wide application in producing various milk, meat, and special fermented foodstuffs for people and animals. Bifidobacteria are the main component of a natural microflora of the intestine and produce lactic, acetic, and butyric acids that kill pathogenic and putrefactive bacteria. The same acids are produced by lactic bacteria inhabiting fermented milk.

Experiments conducted by L.I. Vorob’eva and S.K. Abilev have shown that chemical mutagens kept in fermented milk lose their dangerous properties. Lactic-acid bacteria attack mutagens in different ways. They produce proteins-enzymes and lactic, butyric, and acetic acids, which suppress the activity of mutagens. Some lactic-acid bacteria are capable of forming chemical bounds with mutagens. Sometimes, bacterial cells act as anti-oxidants and remove free radicals.


On the basis of data obtained, the authors conclude that lactic-acid bacteria and bifidobacteria neutralize mutagens, which are dangerous for the genome, within the alimentary canal. It should be mentioned that mutagens may often act as carcinogens, i.e., cause cancer. Therefore, the bacteria and their metabolites protect not only against mutations, but also against cancer. The scientists suggest that they can also neutralize carcinogenic agents and hinder the growth of a newly formed tumour. This is proven by the experiments on rats as well as by medical observations: people who take fermented milk products are less subjected to intestine cancer.

Another valuable group of microorganisms is propionic bacteria, which are used in the production of vitamin B12, bakery, and in pharmaceutics. They live in cheese and milk, and some species - on the skin. The scientists have established that these also act against mutagens.

Protective properties are also found in bacterium enterococcus that inhabits the intestine. It produces proteins that make DNA less damageable.

Fortunately, the anti-mutagenic properties of bacteria are universal. So, using bacteria, people can obtain anti-mutagenic and anti-carcinogenic agents, which may become a basis for creating new food supplements and drugs. And including kefir, yogurt, and other fermented milk products in daily menu is very advisable for everyone.

Nadejda Markina | alfa
Further information:
http://www.informnauka.ru/eng/2002/2002-12-11-02_268_e.htm

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>