Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 3-D mammography system may improve breast imaging

11.12.2002


Developed at MGH, digital tomosynthesis may better identify malignant lesions



A new approach to mammography, developed by researchers at Massachusetts General Hospital (MGH), holds the potential for greatly improving the detection of breast lesions and the ability to predict whether they are benign or malignant. In a presentation earlier this month at the scientific assembly of the Radiological Society of North America (RSNA), Elizabeth Rafferty, MD, of the MGH Breast Imaging Service described initial results of a study comparing the new technique, called digital tomosynthesis, to standard mammography. Among the new technique’s advantages, she explains, is a significant reduction in false positive test results.

"The overlap of breast structures presents a major challenge for radiologists, both because these tissues can hide cancers and because they produce shadows which mimic a lesion on conventional mammography," Rafferty says. "These false positive studies account for almost 25 percent of the instances when women are recalled for additional imaging from their screening mammograms. By eliminating this structure overlap, tomosynthesis prevents virtually all of these unnecessary callbacks, along with the anxiety they create."


Tomosynthesis differs from standard mammography in the way a CT scan differs from a standard X-ray procedure. In tomosynthesis, the X-ray tube moves in a 50-degree arc around the breast while 11 low-dose images are taken during a 7-second examination. A computer then assembles the information to provide high-resolution cross-section and three-dimensional images that can be reviewed by the radiologist at a computer workstation.

"Tomosynthesis takes digital mammography to the next level," adds Daniel Kopans, MD, MGH director of breast imaging and a coauthor of Rafferty’s presentation. "It is a modification of a standard digital mammography unit. The breast is held the same way, but women will be happy to learn that the test requires only one compression of each breast rather than the two currently required by standard mammography." Kopans is one of the inventors of the digital tomosynthesis system, which has been patented by the MGH.

Rafferty’s report covers data from the first 100 women to volunteer for tomosynthesis in addition to standard mammography at MGH. Her data indicates that tomosynthesis makes lesions easier for the radiologist to see and also makes visible some lesions not detectable by conventional procedures. The radiologists who reviewed both standard mammograms and tomosynthsis images for the study reported being significantly more confident in determining the malignancy of lesions with tomosynthesis, Rafferty said.

Richard Moore, head of MGH Breast Imaging Research, says, "We can now see the tree in the forest. Digital tomosynthesis opens up multiple new avenues of investigation into better ways to detect and diagnose breast cancer early." Moore and physicist Tao Wu, PhD, helped develop the tomosynthesis device and algorithms for analyzing data and producing images.

Kopans and his team worked closely with representatives of General Electric to produce a prototype digital tomosynthesis system under a grant from the U.S. Department of Defense, and he is optimistic that ongoing clinical trials at the MGH will soon lead to FDA approval. "Tomosynthesis is going to revolutionize the way we look for breast cancers," Kopans says. "We have only begun to realize the potential of this technology."


The Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of almost $300 million and major research centers in AIDS, the neurosciences, cardiovascular research, cancer, cutaneous biology, transplantation biology and photomedicine. In 1994, the MGH joined with Brigham and Women’s Hospital to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups and nonacute and home health services.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>