Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 3-D mammography system may improve breast imaging

11.12.2002


Developed at MGH, digital tomosynthesis may better identify malignant lesions



A new approach to mammography, developed by researchers at Massachusetts General Hospital (MGH), holds the potential for greatly improving the detection of breast lesions and the ability to predict whether they are benign or malignant. In a presentation earlier this month at the scientific assembly of the Radiological Society of North America (RSNA), Elizabeth Rafferty, MD, of the MGH Breast Imaging Service described initial results of a study comparing the new technique, called digital tomosynthesis, to standard mammography. Among the new technique’s advantages, she explains, is a significant reduction in false positive test results.

"The overlap of breast structures presents a major challenge for radiologists, both because these tissues can hide cancers and because they produce shadows which mimic a lesion on conventional mammography," Rafferty says. "These false positive studies account for almost 25 percent of the instances when women are recalled for additional imaging from their screening mammograms. By eliminating this structure overlap, tomosynthesis prevents virtually all of these unnecessary callbacks, along with the anxiety they create."


Tomosynthesis differs from standard mammography in the way a CT scan differs from a standard X-ray procedure. In tomosynthesis, the X-ray tube moves in a 50-degree arc around the breast while 11 low-dose images are taken during a 7-second examination. A computer then assembles the information to provide high-resolution cross-section and three-dimensional images that can be reviewed by the radiologist at a computer workstation.

"Tomosynthesis takes digital mammography to the next level," adds Daniel Kopans, MD, MGH director of breast imaging and a coauthor of Rafferty’s presentation. "It is a modification of a standard digital mammography unit. The breast is held the same way, but women will be happy to learn that the test requires only one compression of each breast rather than the two currently required by standard mammography." Kopans is one of the inventors of the digital tomosynthesis system, which has been patented by the MGH.

Rafferty’s report covers data from the first 100 women to volunteer for tomosynthesis in addition to standard mammography at MGH. Her data indicates that tomosynthesis makes lesions easier for the radiologist to see and also makes visible some lesions not detectable by conventional procedures. The radiologists who reviewed both standard mammograms and tomosynthsis images for the study reported being significantly more confident in determining the malignancy of lesions with tomosynthesis, Rafferty said.

Richard Moore, head of MGH Breast Imaging Research, says, "We can now see the tree in the forest. Digital tomosynthesis opens up multiple new avenues of investigation into better ways to detect and diagnose breast cancer early." Moore and physicist Tao Wu, PhD, helped develop the tomosynthesis device and algorithms for analyzing data and producing images.

Kopans and his team worked closely with representatives of General Electric to produce a prototype digital tomosynthesis system under a grant from the U.S. Department of Defense, and he is optimistic that ongoing clinical trials at the MGH will soon lead to FDA approval. "Tomosynthesis is going to revolutionize the way we look for breast cancers," Kopans says. "We have only begun to realize the potential of this technology."


The Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of almost $300 million and major research centers in AIDS, the neurosciences, cardiovascular research, cancer, cutaneous biology, transplantation biology and photomedicine. In 1994, the MGH joined with Brigham and Women’s Hospital to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups and nonacute and home health services.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>