Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

West Nile Virus capsid protein causes encephalitic inflammation by triggering cell suicide

10.12.2002


The protein that forms the protective capsid surrounding the West Nile virus genetic material may contribute to the deadly inflammation associated with the virus. West Nile virus, which has rapidly spread across the United States, causes neurological symptoms and encephalitis, which can result in paralysis or death. According to researchers at the University of Pennsylvania School of Medicine, the West Nile virus capsid (WNV-Cp) is a destructive protein that can trigger apoptosis – the automatic self-destructive program within cells – inside infected cells, possibly adding to the damage caused by the virus. Their findings are presented in the December issue of Emerging Infectious Diseases, a journal available on the Centers for Disease Control and Prevention (CDC) Web site.



"Despite the fact that West Nile virus is a global health threat, we understand very little of the pathogenesis of the disease caused by this virus," said David Weiner, PhD, associate professor in Penn’s Department of Pathology and Laboratory Medicine. "Since there is currently no specific treatment for West Nile virus, it is important to understand the biology of this virus to help us devise vaccines and new treatments for the West Nile virus infection."

According to the CDC, the West Nile virus has infected over 3700 people and killed over 200, mostly elderly, people since it was first introduced to the United States in 1999. The numbers of those infected, however, may be much higher since the disease often takes a mild form in healthy people who are less likely to seek treatment and the CDC numbers only count for those cases known to state medical agencies. The virus is spread primarily through its insect host, the mosquito, although it is now known to spread through mothers’ breast milk and organ transplantations.


The Penn researchers first began studying WNV-Cp when they noticed a striking similarity between the gene that encodes for it and that of an HIV regulatory protein. "We hope to extend the lessons they have learned in trying to develop therapeutics for HIV in fighting West Nile." Said Weiner. "In addition to the possibility of creating a vaccine for West Nile, our results support the idea that a specific portion of the capsid protein – called the 3’ terminal region – is required for the protein’s pathogenicity. If we can find a way to block that region’s function, this might help slow the virus down."

By itself, the WNV-Cp protein can cause inflammation. Weiner and his colleagues found that WNV-Cp drives apoptosis in cell cultures through what is called the mitochondrial pathway. The protein begins the process of cell suicide by somehow disrupting the membrane potential of the cell’s mitochondria, which then leads to the activation of proteins such as caspase-9 and caspase-3 that start a cascade of reactions to subsequently cause the cell to digest itself.

Since the protein enters the nucleus of the cell, it is possible that WNV-Cp changes the host cell’s transcriptional machinery, resulting in an over production of certain proteins related to an apoptotic program, which consequently feed back to the mitochondria.

Alternatively, as WNV-Cp moves from the cytoplasm to the nucleus, it may inactivate an important part of the cell’s natural control system that keeps apoptosis in check – overpowering the guard as it were – thus inducing the cell suicide.

"Overall, our data suggest that WNV-Cp may interact with host cell proteins to induce apoptosis in the host cell," said Weiner, "Identifying these proteins will likely give more insight into the biology of West Nile."

The proteins pathogenic properties extend outside of the tissue culture. WNV-Cp also directly caused apoptosis and inflammation in mouse muscle cells. More importantly, the WNV-Cp protein caused inflammation and apoptosis in mouse brain in a manner similar to what is observed in natural infections.

Greg Lester | EurekAlert!
Further information:
http://www.med.upenn.edu/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>