Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

West Nile Virus capsid protein causes encephalitic inflammation by triggering cell suicide

10.12.2002


The protein that forms the protective capsid surrounding the West Nile virus genetic material may contribute to the deadly inflammation associated with the virus. West Nile virus, which has rapidly spread across the United States, causes neurological symptoms and encephalitis, which can result in paralysis or death. According to researchers at the University of Pennsylvania School of Medicine, the West Nile virus capsid (WNV-Cp) is a destructive protein that can trigger apoptosis – the automatic self-destructive program within cells – inside infected cells, possibly adding to the damage caused by the virus. Their findings are presented in the December issue of Emerging Infectious Diseases, a journal available on the Centers for Disease Control and Prevention (CDC) Web site.



"Despite the fact that West Nile virus is a global health threat, we understand very little of the pathogenesis of the disease caused by this virus," said David Weiner, PhD, associate professor in Penn’s Department of Pathology and Laboratory Medicine. "Since there is currently no specific treatment for West Nile virus, it is important to understand the biology of this virus to help us devise vaccines and new treatments for the West Nile virus infection."

According to the CDC, the West Nile virus has infected over 3700 people and killed over 200, mostly elderly, people since it was first introduced to the United States in 1999. The numbers of those infected, however, may be much higher since the disease often takes a mild form in healthy people who are less likely to seek treatment and the CDC numbers only count for those cases known to state medical agencies. The virus is spread primarily through its insect host, the mosquito, although it is now known to spread through mothers’ breast milk and organ transplantations.


The Penn researchers first began studying WNV-Cp when they noticed a striking similarity between the gene that encodes for it and that of an HIV regulatory protein. "We hope to extend the lessons they have learned in trying to develop therapeutics for HIV in fighting West Nile." Said Weiner. "In addition to the possibility of creating a vaccine for West Nile, our results support the idea that a specific portion of the capsid protein – called the 3’ terminal region – is required for the protein’s pathogenicity. If we can find a way to block that region’s function, this might help slow the virus down."

By itself, the WNV-Cp protein can cause inflammation. Weiner and his colleagues found that WNV-Cp drives apoptosis in cell cultures through what is called the mitochondrial pathway. The protein begins the process of cell suicide by somehow disrupting the membrane potential of the cell’s mitochondria, which then leads to the activation of proteins such as caspase-9 and caspase-3 that start a cascade of reactions to subsequently cause the cell to digest itself.

Since the protein enters the nucleus of the cell, it is possible that WNV-Cp changes the host cell’s transcriptional machinery, resulting in an over production of certain proteins related to an apoptotic program, which consequently feed back to the mitochondria.

Alternatively, as WNV-Cp moves from the cytoplasm to the nucleus, it may inactivate an important part of the cell’s natural control system that keeps apoptosis in check – overpowering the guard as it were – thus inducing the cell suicide.

"Overall, our data suggest that WNV-Cp may interact with host cell proteins to induce apoptosis in the host cell," said Weiner, "Identifying these proteins will likely give more insight into the biology of West Nile."

The proteins pathogenic properties extend outside of the tissue culture. WNV-Cp also directly caused apoptosis and inflammation in mouse muscle cells. More importantly, the WNV-Cp protein caused inflammation and apoptosis in mouse brain in a manner similar to what is observed in natural infections.

Greg Lester | EurekAlert!
Further information:
http://www.med.upenn.edu/

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>