Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New System Created by Rensselaer Researchers Speeds the Mapping of Blood Vessel Networks in Live Tumors

06.12.2002


Rensselaer researchers have developed an automated system, called RPI-Trace3D, that can swiftly map capillaries in a live tumor. What used to take days of manually tracing the vessels, now takes two minutes. The diagnostic tool, in use at Harvard Medical School and at Northeastern University, is a boon to oncologists who aim to understand how blood vessels form in tumors.



For the first time, medical scientists can quickly and precisely measure blood vessel properties to quantify the effects of various agents, such as new drugs, on capillary growth. Preventing new capillaries from forming in abnormal tissue by shutting off a tumor’s blood supply (angiogenesis) is a promising approach to fighting cancer.

The patent-pending RPI-Trace3D system was developed by a team led by Badri Roysam, director of the Center for Subsurface Sensing and Imaging Systems (CenSISS) at Rensselaer.


Sophisticated microscopes connected to computers can now generate complex 3-D images to allow scientists to peer deeper inside live tumors. Until recently, such intricate images took days to quantify because scientists had to manually trace the vessels. Typically, the results were less than perfect. The RPI-Trace3D system incorporated into the electronic microscopes identifies and traces all the capillaries of a living tumor in less than two minutes.

The system will significantly improve the search for better cancer-fighting drugs, says Harvard Medical School’s Edward Brown, a researcher in the school’s Department of Radiation Oncology. Brown is using the mapping system in collaboration with Northeastern University and other schools.

"The Rensselaer research team has generated truly impressive algorithms that trace out all the vessels in a 3-D network, as well as identify a number of properties of the vessels. This allows us to quantify these vessels accurately for the first time," Brown says.

Rensselaer graduate student Muhammad-Amri Abdul-Karim and Rensselaer graduate Khalid Al-Kofahi are key members of the Rensselaer team.

"We are the only cancer research team in the world that uses a rapid, fully automated,
tracing algorithm to quickly obtain measurements from 3-D blood vessel images," Abdul-Karim says.

Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

CONTACT: Badri Roysam (518) 276-8067, roysam@ecse.rpi.edu

Jodi Ackerman | EurekAlert!
Further information:
http://www.rpi.edu/dept/NewsComm/
http://www.rpi.edu/web/News/press_releases/2002/tumors.html

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>