Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reach milestone in fight against lymphatic filariasis

05.12.2002


Four annual mass treatments of single doses of safe and inexpensive drugs found effective



Researchers report in the December 5 issue of the New England Journal of Medicine reaching an important milestone in learning how to halt a major mosquito-borne disease affecting 120 million people around the world. The disease, called lymphatic filariasis and commonly known as elephantiasis, is a leading cause of physical disfigurement, social ostracism, and economic loss throughout Africa, Asia, South America, and islands of the Pacific Ocean. The disease can lead to dramatically swollen and disfigured legs, arms, breasts, and genitals.

Treating 2500 residents in a remote area of Papua New Guinea in the South Pacific, the researchers from Case Western Reserve University School of Medicine, University Hospitals of Cleveland, and Papua New Guinea Institute of Medical Research found dramatic results with four annual mass treatments of single doses of safe and inexpensive anti-filarial (anti-worm) drugs. There was a greater than 95 percent decrease in mosquito transmission, nearly complete prevention of new infections in children, reduction of infection rates in the communities to less than one percent, and remarkably, cure of severe disease manifestations such as extremely enlarged arms and legs, and genital disfigurement. Combined with conclusions drawn from mathematical analysis of the interrelationships between the potentials of mosquito transmission and human infection, the report clearly sets the precedent that annual mass treatment with safe and inexpensive medications can go a long way toward eliminating this devastating disease.


James W. Kazura, M.D., the paper’s senior author, notes that this work represents an important milestone in the world-wide effort to combat filariasis. "Until this study, it was not clear that eradication and significant decreases in mosquito-borne transmission and disease severity could be realized even on a small scale." Kazura is a professor of medicine at CWRU and UHC.

Lymphatic filariasis is caused by microscopic juvenile parasitic worms that are transmitted to humans by mosquitoes containing these infective parasites. The juvenile parasites migrate from the site of the mosquito bite and ultimately develop into adult worms in the lymphatic system of the human host, where they cause the hallmark inflammation of filariasis. In many rural areas of Papua New Guinea, Africa, and India, nearly 10 percent of persons suffer from elephantiasis by adulthood, and large numbers of men develop such swelling of the scrotum that it can reach the size of a grapefruit. Transmission is continued in nature when the microscopic offspring of adult worms, called microfilariae, circulate in the bloodstream and are subsequently ingested by blood-feeding mosquitoes. After further development in the mosquito, the parasites are capable of infecting humans when the insect takes its next blood meal.

Building on more than 20 years of research and clinical investigations on filariasis, the project was conducted in Papua New Guinea, where transmission of filariasis and other serious infectious diseases such as malaria reach the highest levels seen anywhere in the world.

"Performance of a study in this setting to determine whether inexpensive and safe medications could decrease transmission of filariasis and control its clinical outcomes represents an extraordinarily tough test or ’proof of principle’ of the Global Plan to Eradicate Lymphatic Filariasis," says Kazura. "This plan, officially launched by the World Health Assembly in Geneva in 1997, states that filariasis is one of six diseases that is potentially eradicable. The target date to achieve this goal at a global level has been set at 2020. With support from the Bill and Melinda Gates Foundation and other non-governmental philanthropic organizations, administration by the Global Alliance through the Carter Center in Atlanta and World Health Organization, and donation of anti-filarial drugs by GlaxoSmithKline and Merck Pharmaceuticals, the infrastructure to implement the control plan in Africa, Latin America, Asia, and Pacific island nations has been growing over the past several years.

"This study provides essential guidelines to control this infectious disease and points the way to the ultimate eradication of filariasis on a global level," says Kazura.

"The work also poses interesting and challenging new research questions that should enable the testing of new hypotheses on how genetics and immunity determine infection susceptibility in humans and contribute to the development and ultimately prevention of lymphatic disease," he says.

An accompanying editorial written by Eric A. Ottesen, M.D., of Emory University, says this study has yielded important conclusions. "It should serve as a touchstone for future evaluations of other programs, both inside and outside the research community," it states.

George Stamatis | EurekAlert!
Further information:
http://www.cwru.edu/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>