Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making heart surgery more brain-friendly

05.12.2002


Surgeons at University Hospitals of Cleveland have demonstrated that the risk of brain damage associated with the use of the heart lung machine can be significantly reduced by modifying the traditional placement of cannulas (tubing) for returning blood flow to the patient. The findings were presented last month at the American Heart Association’s annual Scientific Sessions conference in Chicago, Ill.



The neurological problems associated with bypass surgery have been widely reported. As much as 6 percent to 10 percent of bypass patients will experience memory loss, visual changes, or even stroke. Surgeons believe these outcomes are partly due to "debris" lining the aorta that may break off during surgery--under pressure exerted by the heart-lung bypass machine (which keeps blood flowing to the brain).

Alan Markowitz, MD, and a team of researchers at The Research Institute of University Hospitals of Cleveland and Case Western Reserve University studied the patterns of blood flow to the brain on the heart-lung machine and the risk of stroke from debris released into the aorta, the conventional site of blood return flow to the patient.


Under the standard approach, surgeons place a cannula into the ascending aorta, forcing blood to flow through the aorta and upwards to the brain. Dr. Markowitz’s team selected a different blood vessel. They placed the cannula into the axillary artery, a branch of the aortic arch providing direct blood flow to the right side of the brain. This innovative approach significantly reduced the flow of emboli (debris) to the brain.

"Axillary perfusion appears to deflect debris away from the brain and markedly limits postoperative neurological complications," Dr. Markowitz says. He has used this approach (to cannulate the axillary artery instead of the aorta) in several hundred adult heart surgery patients who were at higher risk for stroke. The results showed a very low incidence of stroke in this high-risk patient population.

"Our clinical experience with such a low stroke rate in these high-risk patients stimulated us to go back to the lab to work out the reason, and we were able to prove our hypothesis," Dr. Markowitz says.

In the laboratory, the research team conducted studies on dogs after modifying the aortic arch to mimic the human anatomy. Their results were gratifying. "We tracked microscopic emboli using fluorescent markers," says Dr. Markowitz. "The placement of the cannula in the axillary artery resulted in a 75 percent decrease in the number of emboli flowing to the right side of the brain, and a 45 percent decrease in the number of emboli flowing to the left side of the brain."

Dr. Markowitz presented his findings in the American Heart Association’s "Stroke Risk and Reduction" section. His presentation was entitled, "Axillary Artery Cannulation for Cardiopulmonary Bypass Reduces Cerebral Microemboli."

Eric Sandstrom | EurekAlert!
Further information:
http://www.uhhs.com/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>