Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making heart surgery more brain-friendly

05.12.2002


Surgeons at University Hospitals of Cleveland have demonstrated that the risk of brain damage associated with the use of the heart lung machine can be significantly reduced by modifying the traditional placement of cannulas (tubing) for returning blood flow to the patient. The findings were presented last month at the American Heart Association’s annual Scientific Sessions conference in Chicago, Ill.



The neurological problems associated with bypass surgery have been widely reported. As much as 6 percent to 10 percent of bypass patients will experience memory loss, visual changes, or even stroke. Surgeons believe these outcomes are partly due to "debris" lining the aorta that may break off during surgery--under pressure exerted by the heart-lung bypass machine (which keeps blood flowing to the brain).

Alan Markowitz, MD, and a team of researchers at The Research Institute of University Hospitals of Cleveland and Case Western Reserve University studied the patterns of blood flow to the brain on the heart-lung machine and the risk of stroke from debris released into the aorta, the conventional site of blood return flow to the patient.


Under the standard approach, surgeons place a cannula into the ascending aorta, forcing blood to flow through the aorta and upwards to the brain. Dr. Markowitz’s team selected a different blood vessel. They placed the cannula into the axillary artery, a branch of the aortic arch providing direct blood flow to the right side of the brain. This innovative approach significantly reduced the flow of emboli (debris) to the brain.

"Axillary perfusion appears to deflect debris away from the brain and markedly limits postoperative neurological complications," Dr. Markowitz says. He has used this approach (to cannulate the axillary artery instead of the aorta) in several hundred adult heart surgery patients who were at higher risk for stroke. The results showed a very low incidence of stroke in this high-risk patient population.

"Our clinical experience with such a low stroke rate in these high-risk patients stimulated us to go back to the lab to work out the reason, and we were able to prove our hypothesis," Dr. Markowitz says.

In the laboratory, the research team conducted studies on dogs after modifying the aortic arch to mimic the human anatomy. Their results were gratifying. "We tracked microscopic emboli using fluorescent markers," says Dr. Markowitz. "The placement of the cannula in the axillary artery resulted in a 75 percent decrease in the number of emboli flowing to the right side of the brain, and a 45 percent decrease in the number of emboli flowing to the left side of the brain."

Dr. Markowitz presented his findings in the American Heart Association’s "Stroke Risk and Reduction" section. His presentation was entitled, "Axillary Artery Cannulation for Cardiopulmonary Bypass Reduces Cerebral Microemboli."

Eric Sandstrom | EurekAlert!
Further information:
http://www.uhhs.com/

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>