Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New first-aid method could prevent brain damage in patients exposed to carbon monoxide

04.12.2002


A new first-aid method of treating carbon monoxide poisoning could prevent brain damage in patients by delivering more oxygen to the brain than the standard treatment, according to a study by physicians at the Toronto General Hospital, University Health Network (UHN).



The study is published in the December issue of the U.S. based and peer-reviewed journal Annals of Emergency Medicine. The researchers, led by Dr. Josh Rucker, a Toronto General Hospital research fellow and resident in the Anesthesiology training program at the University of Toronto, studied 14 subjects who were exposed to low levels of carbon monoxide (resulting in blood levels about equal to those in heavy smokers) on two occasions in order to simulate conditions during carbon monoxide poisoning.

After each exposure, which lasted one hour, the participants were given one of two "test treatments": the standard treatment of 100% oxygen, or the new method consisting of a mixture of mostly oxygen and some carbon dioxide. Each participant received both test treatments in random order. Researchers then monitored the amount of oxygen in the blood and the blood flow to the brain during exposure to carbon monoxide and during the test treatments.


KEY RESULTS

  • During the standard treatment with 100% oxygen, the flow of blood to the brain diminished, decreasing oxygen delivery to the brain. Results showed that the blood flow decreased by up to 33% and the oxygen delivered to the brain decreased by up to 20%.

  • Such a decrease in blood flow to the brain is sufficient to contribute to brain damage in a patient with severe carbon monoxide poisoning.

  • However, during treatment with the combination of oxygen and carbon dioxide, two effects were observed:

  • The delivery of oxygen to the brain was greater than during treatment with oxygen alone;

  • The rate of elimination of carbon monoxide increased by more than 20%.

"These results are intriguing," said Dr. Fisher, an anesthesiologist at Toronto General Hospital, University Health Network, Associate Professor in the Faculty of Medicine at the University of Toronto and a senior author of the study. "Most doctors believe that giving patients oxygen is like giving them chicken soup -- it can’t hurt. But, in fact, we find that treating carbon monoxide-exposed participants with pure oxygen actually limits the amount of oxygen that gets to their brains. That is worrisome."

"If severely poisoned patients respond like our test subjects, this new first-aid treatment may decrease the extent of brain damage in survivors," added Dr. Joseph Fisher.

IMPLICATIONS

  • This study raises the possibility that the standard first-aid treatment of carbon monoxide poisoning -- 100% oxygen - constricts blood vessels to the brain and decreases the total oxygen delivered to the brain.

  • Researchers think that the small amount of carbon dioxide in the oxygen counteracts the constriction of blood vessels to the brain

  • Although clinical studies need to be completed before recommending a change in the first-aid treatment of carbon monoxide poisoning, the results of this study suggest that simply maintaining carbon dioxide levels during treatment will result in more oxygen delivery to the brain, thereby decreasing the risk of permanent brain damage in severely poisoned patients.

  • Note: Adding carbon dioxide to oxygen during treatment for carbon monoxide poisoning was common in the late 1920s and 1930s.

  • It was thought then that the carbon dioxide stimulated breathing, helping to eliminate carbon monoxide more quickly, but was discontinued in the late 1940s when mechanical ventilators became available.

  • This study supports the re-introduction of this practice in order to maintain blood flow and oxygen delivery to the brain.

CARBON MONOXIDE POISONING

  • Carbon monoxide is the leading cause of fatal poisoning in the industrialized world, as well as being endemic in many parts of the developing world which use fossil fuels

  • In North America, it results in as many as 70,000 emergency room visits a year and in thousands of deaths

  • Up to 30 per cent of survivors of severe poisoning are left with disabling psychological and neurological symptoms, which sometimes last for years

  • Carbon monoxide is an odorless colorless gas formed during incomplete combustion of the fossil fuels - gas, oil, coal and wood used in boilers, engines, gas fires, water heaters, solid fuel appliances and open fires

  • When carbon monoxide is inhaled--even in tiny concentrations--it combines with the hemoglobin in the red blood cells to prevent the delivery of oxygen to the body

  • This results in few symptoms until the poisoning is advanced

  • Those suffering from carbon monoxide poisoning may initially complain of headache, nausea and fatigue but the symptoms can rapidly progress to coma and even death

  • It is therefore critical that carbon monoxide be eliminated from the body as soon and as quickly as possible

  • The only currently available emergency treatment for carbon monoxide poisoning is giving the patient 100 per cent oxygen


The study was supported, in part, by the Department of Anesthesia, University Health Network and the University of Toronto, and the Tobi and Ted Bekhor Foundation.

The Toronto General Hospital is a partner in University Health Network, along with Toronto Western and Princess Margaret Hospitals. The scope of research and complexity of cases at Toronto General Hospital has made it a national and international source for discovery, education and patient care. It has one of the largest hospital-based research programs in Canada, with major research projects in cardiology, transplantation, surgical innovation, infectious diseases, and genomic medicine. Toronto General Hospital is a teaching hospital affiliated with the University of Toronto.

To schedule an interview with Dr. Josh Rucker or Dr. Joseph Fisher, please contact:

Alex Radkewycz
Public Affairs
Toronto General Hospital, University Health Network
Phone: 416-340-3895
Pager: 416-980-0752

Marlene de Chellis | EurekAlert!

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>