Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researchers make key immune system discovery

04.12.2002


Research may assist in the development of more effective vaccines and ability to boost immune systems of susceptible patients, such as the elderly



A key discovery about the immune system’s skill to fight off harmful disease-causing germs may lead to the ability to boost the immune systems of the elderly and otherwise susceptible, and offer more effective vaccines for the flu or AIDS, according to a study published in the November 29 issue of Science.

"This research is of particular interest to populations that are highly vulnerable to disease, such as the aging population," said Janko Nikolich-Zugich, M.D., Ph.D., a senior scientist at the Oregon Health & Science University Vaccine and Gene Therapy Institute, who led the research. "We are currently facing the annual flu season where seniors are at a particularly higher risk than the rest of the population. In fact, the majority of the 20,000 people who die each year because of the flu are over 65 years of age. We hope that years down the road, this research finding will help us boost the immune systems of the elderly, reducing this staggering number of deaths."


Nikolich-Zugich and colleagues uncovered this finding by working with a mouse model to study T-cells, specialized white blood cells that can fight off infection when a disease-causing pathogen is detected. Their research not only provides significant information about the workings of the body’s immune system, it also points to the ways the body efficiently gets rid of pathogens and recovers from infection.

Specifically the researchers used mice infected with the herpes simplex virus to look at the quality of the T-cell response against the virus. They concentrated on molecules that sit on the surface of infected cells and alert T-cells. These molecules are part of the major histocompatability complex (MHC) system, a key component of the body’s immune defense system.

"The MHC molecules have two roles. First, they act like the traffic cops in the body. They look for invaders and, once they find them, they call in T-cells to defeat a pathogen," explained Nikolich-Zugich. "But, just as importantly, they also ’train’ T-cells when the pathogen is not around. They do this by selecting and expanding only those T-cells that can be appropriately directed to find and destroy a pathogen when it attacks."

"Up to this point, we did not know whether both of these roles were important in combating infection. What we determined was that the ’training’ function, previously overlooked, was exquisitely important," he said.

By providing "training" to a wide, diverse set of T-cells, some MHC molecules can ensure that the pathogen will be met by the very best T-cells, able to kill the pathogen promptly at the beginning of infection. The findings showed that this can prevent pathogen-induced disease and death. Thus, the more diverse set of T-cells an animal has, the better chance the cells have of detecting a pathogen early and successfully fighting it off. The fact that as people age their T-cell diversity drops helps explain why seniors are more susceptible to the flu and other diseases than the rest of the population.

The research team chose to study herpes because it is a virus that rarely mutates and is easier for the body to spot than other viruses like HIV, which can mutate rapidly. However, by devising ways to achieve and maintain T-cell diversity, researchers hope to achieve better detection of other pathogens, including the rapidly mutating ones such as the AIDS-causing HIV, and fight them off before infection progresses to a higher level. Similarly, maintaining T-cell diversity during aging would go a long way towards reducing age-related illness and death due to infectious diseases.

OHSU is Oregon’s only academic health and science center and includes four schools, two hospitals, numerous primary care and specialty clinics, research institutes and centers, interdisciplinary centers, and community service programs. All OHSU programs integrate the core missions of teaching, healing and discovery.


Martin Munguia | OHSU
Further information:
http://www.ohsu.edu/news/112702tcells.html

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>