Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researchers make key immune system discovery

04.12.2002


Research may assist in the development of more effective vaccines and ability to boost immune systems of susceptible patients, such as the elderly



A key discovery about the immune system’s skill to fight off harmful disease-causing germs may lead to the ability to boost the immune systems of the elderly and otherwise susceptible, and offer more effective vaccines for the flu or AIDS, according to a study published in the November 29 issue of Science.

"This research is of particular interest to populations that are highly vulnerable to disease, such as the aging population," said Janko Nikolich-Zugich, M.D., Ph.D., a senior scientist at the Oregon Health & Science University Vaccine and Gene Therapy Institute, who led the research. "We are currently facing the annual flu season where seniors are at a particularly higher risk than the rest of the population. In fact, the majority of the 20,000 people who die each year because of the flu are over 65 years of age. We hope that years down the road, this research finding will help us boost the immune systems of the elderly, reducing this staggering number of deaths."


Nikolich-Zugich and colleagues uncovered this finding by working with a mouse model to study T-cells, specialized white blood cells that can fight off infection when a disease-causing pathogen is detected. Their research not only provides significant information about the workings of the body’s immune system, it also points to the ways the body efficiently gets rid of pathogens and recovers from infection.

Specifically the researchers used mice infected with the herpes simplex virus to look at the quality of the T-cell response against the virus. They concentrated on molecules that sit on the surface of infected cells and alert T-cells. These molecules are part of the major histocompatability complex (MHC) system, a key component of the body’s immune defense system.

"The MHC molecules have two roles. First, they act like the traffic cops in the body. They look for invaders and, once they find them, they call in T-cells to defeat a pathogen," explained Nikolich-Zugich. "But, just as importantly, they also ’train’ T-cells when the pathogen is not around. They do this by selecting and expanding only those T-cells that can be appropriately directed to find and destroy a pathogen when it attacks."

"Up to this point, we did not know whether both of these roles were important in combating infection. What we determined was that the ’training’ function, previously overlooked, was exquisitely important," he said.

By providing "training" to a wide, diverse set of T-cells, some MHC molecules can ensure that the pathogen will be met by the very best T-cells, able to kill the pathogen promptly at the beginning of infection. The findings showed that this can prevent pathogen-induced disease and death. Thus, the more diverse set of T-cells an animal has, the better chance the cells have of detecting a pathogen early and successfully fighting it off. The fact that as people age their T-cell diversity drops helps explain why seniors are more susceptible to the flu and other diseases than the rest of the population.

The research team chose to study herpes because it is a virus that rarely mutates and is easier for the body to spot than other viruses like HIV, which can mutate rapidly. However, by devising ways to achieve and maintain T-cell diversity, researchers hope to achieve better detection of other pathogens, including the rapidly mutating ones such as the AIDS-causing HIV, and fight them off before infection progresses to a higher level. Similarly, maintaining T-cell diversity during aging would go a long way towards reducing age-related illness and death due to infectious diseases.

OHSU is Oregon’s only academic health and science center and includes four schools, two hospitals, numerous primary care and specialty clinics, research institutes and centers, interdisciplinary centers, and community service programs. All OHSU programs integrate the core missions of teaching, healing and discovery.


Martin Munguia | OHSU
Further information:
http://www.ohsu.edu/news/112702tcells.html

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>