Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary new test to help eliminate Tuberculosis

03.12.2002


A revolutionary new test for identifying people infected with tuberculosis (TB), one of the leading causes of death worldwide, will shortly be launched by Oxford Immunotec Ltd, a new Oxford University spin-off company. The test radically improves the speed and accuracy with which the disease can be identified. It has been developed to replace the existing skin test for TB, which is given to 600,000 UK schoolchildren every year.



Oxford Immunotec’s test has come from discoveries made over the last seven years at the University of Oxford by Dr Ajit Lalvani and collaborators at the Nuffield Department of Medicine, John Radcliffe Hospital. A replacement for the 100-year-old skin test is long overdue but, until now, there has not been a better way of diagnosing infection.
The Oxford Immunotec test is based on patented technology which provides a simple and extremely accurate way of studying a person’s cellular immune response to an infection. Every time someone becomes infected with a disease, the body produces specific cells (white blood cells) to fight the infection. The new test looks to see if the body has produced these cells in response to TB and monitors how their numbers change over time. In this way, it is possible to determine if a person is infected and whether they are effectively fighting the infection. This powerful technique can be used not only for diagnosis of infections, but also for prognosis of disease and monitoring of treatment.

Crucially, the Oxford Immunotec test will also make it possible to accurately identify people who are carrying TB infection, but who have not yet gone on to develop disease. Diagnosing and treating infected people before they go on to develop severe disease and infect others is essential to prevent the spread of TB and save lives. TB kills between two and three million people each year, and the death toll is increasing. TB in the UK has risen almost every year for the last 15 years, with 6,500 newly diagnosed cases each year.



Since 1998, Dr Lalvani has used this rapid blood test in double blinded, randomised studies to prove its effectiveness in over 2,000 TB patients and healthy controls in eight different countries. These studies demonstrate that the new test is a radical improvement on the current skin test, and that, unlike the skin test, it works well in people with weaker immune systems, such as children, the elderly and those immunosuppressed with diseases like HIV.

Dr Peter Wrighton-Smith, CEO of Oxford Immunotec, said: ’We are extremely excited about this new test which we believe will revolutionise TB control. This test is needed as never before because TB is resurging in the developed world and already parts of the UK have TB rates as high as India. The huge amount of clinical data gathered to date proves this technology works and we are already looking to apply it to other diseases where the cellular immune response is critical, such as HIV, Hepatitis C and Cancer.’

Barbara Hott | alfa

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>