Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caught sleeping: Study captures virus dormant in human cells

03.12.2002


Cytomegalovirus, hidden in most people, begins to give up secrets of its stealth



Princeton scientists have taken an important step toward understanding a virus that infects and lies dormant in most people, but emerges as a serious illness in transplant patients, some newborns and other people with weakened immune systems.

The virus, called human cytomegalovirus, enters the bone marrow and can hide there for a lifetime. Until now, however, scientists had not been able to study the virus in its latent stage because it infects only humans and does not readily infect or become dormant in laboratory strains of bone marrow cells.


In a study published online Nov. 27, Felicia Goodrum, a postdoctoral fellow, and Tom Shenk, a professor of molecular biology, demonstrated a laboratory system for studying the virus in its latent stage. They showed they could establish a latent infection in freshly collected bone marrow cells and then retrigger an active infection. They drew on their system to discover a set of genes that the virus uses in its latent state and that may give the virus its great capacity for stealth.

Knowing what genes the virus uses to hide and re-emerge could give pharmaceutical companies targets for designing drugs that disrupt those mechanisms. "So you could dream that some day in the future we could clear the virus from a person and not just treat the symptoms that occur when the virus re-emerges," said Shenk.

Cytomegalovirus is in a broad family of herpes-related viruses, which includes the virus that causes chicken pox and shingles. The only treatment doctors currently have for cytomegalovirus is an antiviral drug called gancyclovir, which stops the virus from replicating during its active infection phase, but has no effect during the latent stage, when the virus does not replicate.

Another possible use for the research would be to develop a diagnostic test that indicates when the virus is likely to reactivate itself. If scientists could pinpoint genes that turn on just in advance of reactivation, then doctors could use that information in deciding whether to administer antiviral drugs to their patients. Currently, doctors prescribe gancyclovir preemptively for many patients, even though it has significant side effects.

The researchers described their results in an online edition of the Proceedings of the National Academy of Sciences. It is scheduled to appear in the journal’s Dec. 10 print edition. Goodrum and Shenk collaborated with Craig Jordan of the University of Kentucky Medical Center and Kevin High of the Wake Forest University School of Medicine, who supplied human bone marrow cells and expertise in working with them.

The key to the study’s success, said Shenk, was Goodrum’s painstaking work in learning to handle freshly harvested bone marrow cells in the lab and to maintain them in a state that matches as closely as possible their condition in the human body. Her supply of cells was limited because they are badly needed for bone marrow transplantations. Goodrum could use only cells that were caught in a filter used in transplant procedures.

Shenk said her work makes it possible to answer big questions that have long eluded researchers. It is unknown, for example, what specific cells the virus infects among the many constituents of bone marrow. In their study, Goodrum narrowed the search to a group of cells that constitute just 1 percent of bone marrow cells. The next step, said Goodrum, will be to look at even smaller subpopulations of cells and compare the activity of the virus and its genes in each of them.

"We’d like to know the answers to some very basic questions," said Goodrum. "How many copies of the virus are there in an infected cell? And how exactly do they get passed along?"

"These are all things you get to think about when you have a model system," said Shenk. "You couldn’t do it without the system Felicia developed."

Understanding the virus is important because roughly half of all organ or bone marrow transplant patients, who are always given immune-suppressing drugs, experience some complication with cytomegalovirus, said Shenk. Women who become infected or experience a reactivation during a pregnancy risk passing the virus to the fetus, which can lead to birth defects, including deafness and developmental disorders.

Between 50 and 85 percent of Americans become infected with cytomegalovirus by age 40, according to the National Institutes of Health. Shenk said he believes the figure may be even higher, because every sample Goodrum has studied had at least some cells that were infected with the virus.

Steven Schultz | EurekAlert!

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>