Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ulcer-Causing Pathogen Uses Hydrogen for Energy

03.12.2002


In a groundbreaking study, a North Carolina State University microbiologist has discovered that the bacteria associated with almost all human ulcers - one that is also correlated with the development of certain types of gastric cancer in humans - uses hydrogen as an energy source.



The finding is novel because most bacteria use sugars and other carbohydrates to grow, says Dr. Jonathan Olson, assistant professor of microbiology at NC State. The human pathogen Helicobacter pylori does not.

"No one has ever suspected hydrogen to be an energy source for pathogens," Olson said. "Now we have a whole new target for antibiotics for this particular bacteria."


The research is described in a paper published in the Friday, Nov. 29 edition of Science.

The study was performed at the University of Georgia, where Olson was a member of the research faculty before joining the microbiology faculty at NC State this summer. Dr. Robert J. Maier, a microbiologist at the University of Georgia, is a co-author of the paper. The work was supported by the Georgia Research Alliance.

H. pylori is only found in humans, Olson says. The bacteria infects greater than 50 percent of the world’s population, and persists until it is treated. If left untreated, the bacteria can give rise to ulcers and two different kinds of cancer.

H. pylori contains an enzyme - hydrogenase - that uses hydrogen as an energy source. "If we were to develop a drug to inhibit the hydrogenase enzyme, we could eradicate ulcers in humans," Olson says.

Using mice as a model, the scientists discovered that mice stomachs contained more than enough hydrogen to support the growth of H. pylori. The study showed that mice stomachs contained 10 to 50 times more hydrogen than the bacteria needs to grow.

Moreover, when the scientists created a mutant strain of H. pylori without hydrogenase, only 24 percent of these mutants colonized in mice, as opposed to 100 percent of the parent strain that was able to utilize hydrogen, Olson says. The mutants that did colonize in mice also had lower levels of bacteria, he says.

Hydrogenase is a complicated enzyme that is not made by humans. Olson says that finding an antibiotic that is specifically targeted to inhibit the enzyme shouldn’t be toxic to other human enzymes. However, no compounds that specifically inhibit hydrogenase currently exist, so the development of such a drug will come later rather than sooner, Olson says.

Because not many bacteria use hydrogen to grow, Olson and Maier are among a small fraternity of scientists who study bacterial hydrogen utilization. Most of these bacteria exist in hydrogen-rich environments, Olson says, mainly in agricultural areas.

Olson’s lab at NC State is presently studying a hydrogen-utilizing bacteria that is the most common cause of food poisoning.

Dr. Jonathan Olson | EurekAlert!
Further information:
http://www.ncsu.edu/news/press_releases/02_12/316.htm

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>