Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ulcer-Causing Pathogen Uses Hydrogen for Energy

03.12.2002


In a groundbreaking study, a North Carolina State University microbiologist has discovered that the bacteria associated with almost all human ulcers - one that is also correlated with the development of certain types of gastric cancer in humans - uses hydrogen as an energy source.



The finding is novel because most bacteria use sugars and other carbohydrates to grow, says Dr. Jonathan Olson, assistant professor of microbiology at NC State. The human pathogen Helicobacter pylori does not.

"No one has ever suspected hydrogen to be an energy source for pathogens," Olson said. "Now we have a whole new target for antibiotics for this particular bacteria."


The research is described in a paper published in the Friday, Nov. 29 edition of Science.

The study was performed at the University of Georgia, where Olson was a member of the research faculty before joining the microbiology faculty at NC State this summer. Dr. Robert J. Maier, a microbiologist at the University of Georgia, is a co-author of the paper. The work was supported by the Georgia Research Alliance.

H. pylori is only found in humans, Olson says. The bacteria infects greater than 50 percent of the world’s population, and persists until it is treated. If left untreated, the bacteria can give rise to ulcers and two different kinds of cancer.

H. pylori contains an enzyme - hydrogenase - that uses hydrogen as an energy source. "If we were to develop a drug to inhibit the hydrogenase enzyme, we could eradicate ulcers in humans," Olson says.

Using mice as a model, the scientists discovered that mice stomachs contained more than enough hydrogen to support the growth of H. pylori. The study showed that mice stomachs contained 10 to 50 times more hydrogen than the bacteria needs to grow.

Moreover, when the scientists created a mutant strain of H. pylori without hydrogenase, only 24 percent of these mutants colonized in mice, as opposed to 100 percent of the parent strain that was able to utilize hydrogen, Olson says. The mutants that did colonize in mice also had lower levels of bacteria, he says.

Hydrogenase is a complicated enzyme that is not made by humans. Olson says that finding an antibiotic that is specifically targeted to inhibit the enzyme shouldn’t be toxic to other human enzymes. However, no compounds that specifically inhibit hydrogenase currently exist, so the development of such a drug will come later rather than sooner, Olson says.

Because not many bacteria use hydrogen to grow, Olson and Maier are among a small fraternity of scientists who study bacterial hydrogen utilization. Most of these bacteria exist in hydrogen-rich environments, Olson says, mainly in agricultural areas.

Olson’s lab at NC State is presently studying a hydrogen-utilizing bacteria that is the most common cause of food poisoning.

Dr. Jonathan Olson | EurekAlert!
Further information:
http://www.ncsu.edu/news/press_releases/02_12/316.htm

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>