Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New UGA study demonstrates bacterial pathogens use hydrogen as energy source in animals

29.11.2002


A new study, just published in the journal Science, shows for the first time that some bacteria that cause diseases in humans use molecular hydrogen as an energy source. The research could point the way toward new treatment regimens for everything from ulcers and chronic gastritis to stomach cancer.



Microbiologists at the University of Georgia worked specifically in mice with the gastric bacterium Helicobacter pylori, a pathogen that colonizes the mucosal surfaces of the human stomach and gives rise to gastritis, peptic ulcers and sometimes certain types of gastric cancer.

"This was completely unexpected, because most scientists have thought that hydrogen was always lost from the body as a waste product," said Rob Maier, Georgia Research Alliance Eminent Scholar and Ramsey Professor of Microbiology at UGA. "This is the first evidence that hydrogen remains in the body at substantial levels and is an energy source for pathogenic bacteria. Our knowledge that human pathogens can grow on hydrogen while residing in an animal may have profound implications for the treatment of some diseases."


Coauthor for the paper is Jonathan Olson, now an assistant professor of microbiology at North Carolina State University, who contributed to the work as a postdoctoral associate in Maier’s laboratory at UGA.

Perhaps as important as the discovery that hydrogen can fuel the growth of Helicobacter is Maier’s belief that the same process may provide energy for other human pathogens, such as Salmonella, E. coli and Campylobacter jejuni, the leading cause of bacterial human diarrhea illnesses in the world. These bacteria also have the hydrogen-utilizing enzyme, but the role of the enzyme has not yet been addressed, said Maier. Because the hydrogen comes from flora in the colon, something as simple as a diet change could profoundly impact the progress of disease from all of these bacteria.

Bacterial oxidation of molecular hydrogen is common in nature, but the presence and role of hydrogen in animals has been little studied. Tests have shown the presence of hydrogen in the breath of human test subjects, indicating it is somewhere in the body, but science was virtually unanimous in believing that whatever molecular hydrogen was produced in the body was excreted as an unneeded waste product, with no role in metabolism or cell growth. Maier resolved to find out once and for all where such hydrogen might be, so he inserted a tiny probe into the stomachs of living mice and measured the amounts of hydrogen in the area of the animals’ mucosal layer.

The result was startling. After more than 30 measurements, Maier and Olson found large amounts of hydrogen present -- the first time that hydrogen has ever been detected in any vertebrate animal tissue. The team repeated the experiment on different stomach regions of more live, anesthetized mice and found hydrogen present in every sample, though in differing concentrations.

"We not only found this hydrogen present in the gastric mucosa of mice but we discovered that its use greatly increased the stomach colonization ability of H. pylori," said Maier.

The implications of the research reach beyond science to medicine for both humans and animals. An estimated 50 percent of humans, for example, are infected with H. pylori -- hundreds of millions of people -- though most show no symptoms from the pathogen. The bacterium is very good at coexisting with its host most of the time, but it causes a range of illnesses for which people spend vast sums each year seeking relief. No one knows how the pathogen is spread, and whether it is through food or water or physical contact remains speculative. Nor do scientists yet know how the hydrogen gets from the producers (the bacterial flora in the colon) to the hydrogen consumers at the walls of the stomach, though it could be through the bloodstream.

What is clear is that molecular hydrogen is apparently a virulence factor for human pathogens -- something entirely unsuspected before this research. (Hydrogen levels have recently been measured in the termite hind-gut and in the cockroach mid-gut, but this is the first evidence of it within vertebrate tissue. Mouse models are frequently used to unravel human health problems, since both share many of the same biological processes.)

"This really represents a new factor in understanding how a human pathogen grows and persists in an animal host," said Maier. "Hydrogen may play an especially important role in setting up the stable infection required for the most serious of the pathologies associated with H. pylori infection, gastric ulceration and cancer. This is because one hallmark of the pathogen is its persistence in the mucosa, and its long-term survival would be affected by the availability of its energy source, namely hydrogen."

The research may well open numerous avenues for new studies. It has been estimated that 14 percent of all the intestinal-produced hydrogen is excreted through the breath of humans, and Maier and Olson speculate that hydrogen may be carried to the lungs via the bloodstream. Though unstudied, it’s possible that this hydrogen could serve as an energy source for pathogens in other areas of the body, including the lungs and internal organs.

Since the amount of hydrogen produced in the colon varies based on diet, and since the researchers have shown that H. pylori uses this hydrogen as an energy source, something as simple as a diet change could affect virulence and persistence of this and other pathogens.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu/

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>