Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UWE Builds Device to Ease Discomfort for Prosthesis Wearers

27.11.2002


For wearers of prosthetic or false limbs, the comfort and effectiveness of the socket fit is crucial. New ways of measuring and solving socket pressure points - using load analysis techniques from the aircraft industry - have been developed by engineering and computing researchers at the University of the West of England.



A team from UWE’’s Faculty of Computing, Engineering and Mathematical Sciences has just been awarded a grant of £52,000 by the charity Remedi to further their research, which could lead to widespread benefits.

"In the UK alone there are over 55,000 amputees, over 70% of whom are elderly people with lower limb amputations," said Dr Siamak Noroozi, Director of the Computational Mechanics Group who is leading the project team.


"Treatment is costly, but a highly advanced prosthesis has little value if the socket is uncomfortable and ineffective. Over time, the stump can shrink and change in size, and excessive pressure can result in damage to remaining tissue. Our research could provide prosthesis specialists with a method of assessing socket fit that is both visual and accurate and best of all, is non-invasive."

Researchers have already developed a prototype in which the entire socket forms an optical transducer, able to output signals in response to changes in pressure. The technique is based on methods of detecting stresses in highly complex aerospace structures. A special reflective coating is applied inside the polymer socket housing the stump of a limb. Special lenses sensitive to polarised light are used to view the patient walking and clearly reveal the pressure points as contour lines of different colour.

These visual results can indicate problem areas immediately to a prosthetist. But the device has a second string to its bow - the constantly shifting contour lines of pressure can be integrated with a data acquisition system. UWE computing experts are working on software to link this to an artificial neural network capable of being trained to recognise and interpret the input data. "This means we can capture the value of a contour at any given moment," Siamak said. "We can then use the software to predict pressure between the residual limb and the socket. This can be stored and analysed, and used to build a database able to predict more accurately how minute changes to the configuration of a socket will affect the wearer."

The beauty of the system is that the reflective coating can be applied to the same socket material - a type of polymer - that is already used for sockets. The system can be used qualitatively - for the specialist to make a visual judgement on the fit. It can also be used quantitatively, recording all the details of the stresses as they change under normal movement.

Socket fit is a major problem with all prostheses - one that people have been trying to solve for decades, according to Dr John Vinney, Head of the School of Mechanical, Manufacturing and Aerospace Engineering at UWE. "Previous research has concentrated on theoretical approaches or has used invasive wires and monitors which may alter the normal gait of the patient being monitored. This method gives us accurate patient-based data.

"The techniques could be of great assistance to patients worldwide. The system could be used remotely, to analyse data captured on the other side of world."

The two-year research project begins in January 2003, and testing and evaluation will take place in conjunction with staff and patients from the North Bristol Healthcare Trust Disablement Services Centre. The team hopes to produce a hand-held design tool that will help the prosthetist visualise and quantify what is actually going on inside a socket, so that they can improve the level of comfort for their patients. As Dr Vinney concludes: "We want to produce a device that works quickly and accurately, with the potential to dramatically improve the quality of life for a significant number of people."

Julia Weston | alfa
Further information:
http://www.uwe.ac.uk

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>