Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Environmental enrichment reverses learning impairments caused by lead poisoning


Environmental enrichment that stimulates brain activity can reverse the long-term learning deficits caused by lead poisoning, according to a study conducted by researchers at the Johns Hopkins Bloomberg School of Public Health. It has long been known that lead poisoning in children affects their cognitive and behavioral development. Despite significant efforts to reduce lead contamination in homes, childhood lead poisoning remains a major public health problem with an estimated 34 million housing units in the United States containing lead paint. The Hopkins study is the first to demonstrate that the long-term deficits in cognitive function caused by lead can be reversed and offers a basis for the treatment of childhood lead intoxication. The findings appear in the online edition of the Annals of Neurology.

“Lead exposure during development causes long-lasting deficits in learning in experimental animals, but our study shows for the first time that these cognitive deficits are reversible,” said lead author Tomás R. Guilarte, PhD, professor of environmental health sciences at the Johns Hopkins Bloomberg School of Public Health. “This study is particularly important for two reasons. First, it was not known until now whether the effects of lead on cognitive function were reversible. Secondly, the environmental enrichment that reversed the learning deficits was administered after the animals were exposed to lead. Environmental enrichment could be a promising therapy for treating millions of children suffering from the effects of lead poisoning,” added Dr. Guilarte.

For their study, Dr. Guilarte, graduate student Christopher Toscano, research technologist Jennifer McGlothan, and research associate Shelley Weaver observed groups of lead–treated or non-treated (control) rats that were raised in an enriched environment. Enrichment cages were multi-level, containing toys, a running wheel, a hammock, platforms, tunnels, and housed multiple animals. Littermates to these rats were raised in standard-sized laboratory cages that the researchers designated as “isolated environment.” To measure the learning ability of rats in the various treatment groups, the researchers trained each rat to find a submerged, invisible platform in a pool of water, called the water maze. Each day of training, they timed how long each rat took to find the platform. They observed that both the lead-exposed and control rats living in the enriched environment learned to find the platform in 20 seconds or less within the four-day training period. The isolated control rats took longer to find the platform, while lead-exposed isolated rats took the longest and nearly 50 percent of them failed to learn the test by the last day of training.
Along with the enhanced learning performance of lead-exposed rats reared in an enriched environment, the researchers found a recovery in the levels of the NR1 subunit of the N-methyl-D-aspartate receptor (NMDAR) in the hippocampus. The NR1 subunit is obligatory for functional NMDAR and these researchers have previously shown that lead targets the NMDAR. The hippocampus is a brain region important for learning and memory and previous research has determined that the NR1 subunit is essential for learning performance in the water maze.

“We all recognize that children that are intellectually stimulated have a greater capacity to learn. Unfortunately, often times the same children that are exposed to lead, also live in impoverished and neglected homes. It seems that based on our study, many lead-exposed children would benefit from this type of therapeutic approach,” said Dr. Guilarte.

“Environmental Enrichment Reverses Cognitive and Molecular Deficits Induced by Developmental Lead Exposure” was written by Tomás R. Guilarte, PhD, Christopher D. Toscano, MS, Jennifer L. McGlotham, MS, and Shelly A. Weaver, PhD. It is published in the December 2002 edition of the Annals of Neurology.

The research was supported by the National Institute of Environmental Health Sciences.

Public Affairs Media Contacts for the Johns Hopkins Bloomberg School of Public Health:Tim Parsons or Kenna Brigham @ 410-955-6878 or

Tim Parsons | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>