Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental enrichment reverses learning impairments caused by lead poisoning

27.11.2002


Environmental enrichment that stimulates brain activity can reverse the long-term learning deficits caused by lead poisoning, according to a study conducted by researchers at the Johns Hopkins Bloomberg School of Public Health. It has long been known that lead poisoning in children affects their cognitive and behavioral development. Despite significant efforts to reduce lead contamination in homes, childhood lead poisoning remains a major public health problem with an estimated 34 million housing units in the United States containing lead paint. The Hopkins study is the first to demonstrate that the long-term deficits in cognitive function caused by lead can be reversed and offers a basis for the treatment of childhood lead intoxication. The findings appear in the online edition of the Annals of Neurology.



“Lead exposure during development causes long-lasting deficits in learning in experimental animals, but our study shows for the first time that these cognitive deficits are reversible,” said lead author Tomás R. Guilarte, PhD, professor of environmental health sciences at the Johns Hopkins Bloomberg School of Public Health. “This study is particularly important for two reasons. First, it was not known until now whether the effects of lead on cognitive function were reversible. Secondly, the environmental enrichment that reversed the learning deficits was administered after the animals were exposed to lead. Environmental enrichment could be a promising therapy for treating millions of children suffering from the effects of lead poisoning,” added Dr. Guilarte.

For their study, Dr. Guilarte, graduate student Christopher Toscano, research technologist Jennifer McGlothan, and research associate Shelley Weaver observed groups of lead–treated or non-treated (control) rats that were raised in an enriched environment. Enrichment cages were multi-level, containing toys, a running wheel, a hammock, platforms, tunnels, and housed multiple animals. Littermates to these rats were raised in standard-sized laboratory cages that the researchers designated as “isolated environment.” To measure the learning ability of rats in the various treatment groups, the researchers trained each rat to find a submerged, invisible platform in a pool of water, called the water maze. Each day of training, they timed how long each rat took to find the platform. They observed that both the lead-exposed and control rats living in the enriched environment learned to find the platform in 20 seconds or less within the four-day training period. The isolated control rats took longer to find the platform, while lead-exposed isolated rats took the longest and nearly 50 percent of them failed to learn the test by the last day of training.
Along with the enhanced learning performance of lead-exposed rats reared in an enriched environment, the researchers found a recovery in the levels of the NR1 subunit of the N-methyl-D-aspartate receptor (NMDAR) in the hippocampus. The NR1 subunit is obligatory for functional NMDAR and these researchers have previously shown that lead targets the NMDAR. The hippocampus is a brain region important for learning and memory and previous research has determined that the NR1 subunit is essential for learning performance in the water maze.



“We all recognize that children that are intellectually stimulated have a greater capacity to learn. Unfortunately, often times the same children that are exposed to lead, also live in impoverished and neglected homes. It seems that based on our study, many lead-exposed children would benefit from this type of therapeutic approach,” said Dr. Guilarte.

“Environmental Enrichment Reverses Cognitive and Molecular Deficits Induced by Developmental Lead Exposure” was written by Tomás R. Guilarte, PhD, Christopher D. Toscano, MS, Jennifer L. McGlotham, MS, and Shelly A. Weaver, PhD. It is published in the December 2002 edition of the Annals of Neurology.

The research was supported by the National Institute of Environmental Health Sciences.

Public Affairs Media Contacts for the Johns Hopkins Bloomberg School of Public Health:Tim Parsons or Kenna Brigham @ 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu/Press_Room/Press_Releases/environmental_enrichment.html
http://www.niehs.nih.gov/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>