Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental enrichment reverses learning impairments caused by lead poisoning

27.11.2002


Environmental enrichment that stimulates brain activity can reverse the long-term learning deficits caused by lead poisoning, according to a study conducted by researchers at the Johns Hopkins Bloomberg School of Public Health. It has long been known that lead poisoning in children affects their cognitive and behavioral development. Despite significant efforts to reduce lead contamination in homes, childhood lead poisoning remains a major public health problem with an estimated 34 million housing units in the United States containing lead paint. The Hopkins study is the first to demonstrate that the long-term deficits in cognitive function caused by lead can be reversed and offers a basis for the treatment of childhood lead intoxication. The findings appear in the online edition of the Annals of Neurology.



“Lead exposure during development causes long-lasting deficits in learning in experimental animals, but our study shows for the first time that these cognitive deficits are reversible,” said lead author Tomás R. Guilarte, PhD, professor of environmental health sciences at the Johns Hopkins Bloomberg School of Public Health. “This study is particularly important for two reasons. First, it was not known until now whether the effects of lead on cognitive function were reversible. Secondly, the environmental enrichment that reversed the learning deficits was administered after the animals were exposed to lead. Environmental enrichment could be a promising therapy for treating millions of children suffering from the effects of lead poisoning,” added Dr. Guilarte.

For their study, Dr. Guilarte, graduate student Christopher Toscano, research technologist Jennifer McGlothan, and research associate Shelley Weaver observed groups of lead–treated or non-treated (control) rats that were raised in an enriched environment. Enrichment cages were multi-level, containing toys, a running wheel, a hammock, platforms, tunnels, and housed multiple animals. Littermates to these rats were raised in standard-sized laboratory cages that the researchers designated as “isolated environment.” To measure the learning ability of rats in the various treatment groups, the researchers trained each rat to find a submerged, invisible platform in a pool of water, called the water maze. Each day of training, they timed how long each rat took to find the platform. They observed that both the lead-exposed and control rats living in the enriched environment learned to find the platform in 20 seconds or less within the four-day training period. The isolated control rats took longer to find the platform, while lead-exposed isolated rats took the longest and nearly 50 percent of them failed to learn the test by the last day of training.
Along with the enhanced learning performance of lead-exposed rats reared in an enriched environment, the researchers found a recovery in the levels of the NR1 subunit of the N-methyl-D-aspartate receptor (NMDAR) in the hippocampus. The NR1 subunit is obligatory for functional NMDAR and these researchers have previously shown that lead targets the NMDAR. The hippocampus is a brain region important for learning and memory and previous research has determined that the NR1 subunit is essential for learning performance in the water maze.



“We all recognize that children that are intellectually stimulated have a greater capacity to learn. Unfortunately, often times the same children that are exposed to lead, also live in impoverished and neglected homes. It seems that based on our study, many lead-exposed children would benefit from this type of therapeutic approach,” said Dr. Guilarte.

“Environmental Enrichment Reverses Cognitive and Molecular Deficits Induced by Developmental Lead Exposure” was written by Tomás R. Guilarte, PhD, Christopher D. Toscano, MS, Jennifer L. McGlotham, MS, and Shelly A. Weaver, PhD. It is published in the December 2002 edition of the Annals of Neurology.

The research was supported by the National Institute of Environmental Health Sciences.

Public Affairs Media Contacts for the Johns Hopkins Bloomberg School of Public Health:Tim Parsons or Kenna Brigham @ 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu/Press_Room/Press_Releases/environmental_enrichment.html
http://www.niehs.nih.gov/

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

Magnesium magnificent for plasmonic applications

23.05.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>