Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A less invasive fertility procedure could be used to treat some infertile women

26.11.2002


A woman with an obstructed cervix has been successfully treated for infertility using a technique known as intraperitoneal insemination (IPI). The technique, described in a case report just published in BMC Pregnancy and Childbirth, is less invasive and cheaper than alternative infertility treatments, which involve the harvesting of a woman’s eggs.

Scott Sills from the Atlanta Medical Center and Gianpiero Palermo from the Cornell Institute for Reproductive Medicine describe how they were able to successfully assist the 37 year old women to get pregnant. Their decision to publish this research in an online open access journal allows this important study to be read by the widest possible audience.

In couples with healthy semen, standard fertility treatments such as intrauterine insemination are usually the most appropriate. However, these treatments cannot be used if a narrow or obstructed cervix blocks the path to the uterus. Such women are usually offered either corrective surgery to remove the blockage or invasive fertility treatments like gamete or zygote intrafallopian transfer. Sills and Palermo suggest that women who have no blockages in their fallopian tubes could receive intraperitoneal insemination.

Intraperitoneal insemination bypasses the cervix by injecting sperm through the vagina, directly into the pelvic cavity where eggs are released. In this case study, the patient was first treated with follicle stimulating hormone to induce ovulation after which a specially prepared sperm sample was injected into the pelvic cavity. Following the procedure progesterone was given to the patient for eight weeks. The procedure was a success and it is hoped that it will be a useful alternative to more complex fertility treatments in patients where a cervical factor contributes to their infertility.

To read this article in full visit: http://www.biomedcentral.com/content/pdf/1471-2393-2-9.pdf



The authors of this research can by contacted by email
Scott Sills - dr.sills@ivf.com
Gianpiero Palermo - gdpalerm@med.cornell.edu

Gordon Fletcher | BioMed Central
Further information:
http://www.biomedcentral.com/content/pdf/1471-2393-2-9.pdf
http://www.biomedcentral.com/info/about/pr-releases
http://www.biomedcentral.com

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>