Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniature implantable sensor likely lifesaver for patients

25.11.2002


Using a tiny wireless sensor developed at Oak Ridge National Laboratory, doctors will know in minutes instead of hours if an organ is getting adequate blood flow after transplant or reconstructive surgery.



Conventional methods for assessing circulation involve invasive procedures or extensive laboratory testing. In some cases, by the time doctors realize there isn’t adequate blood flow to an organ or tissue, irreversible damage already has occurred.

"Our goal is to offer a technique that provides the physician with a very early indication of whether the surgery is successful," said Nance Ericson, who leads the effort from ORNL’s Engineering Science and Technology Division. Ericson is working with Mark Wilson, a surgeon at the University of Pittsburgh, and Gerard Coté of Texas A&M University.


The tiny implantable sensor – about the diameter of a quarter -- and micro-instrumentation being developed by Ericson would provide real-time information by transmitting data to a nearby receiver. Specifically, the unit employs optical sensors to assess tissue circulation. Preliminary tests using laboratory rats have provided encouraging results.

"Although we have more work to do, we are extremely optimistic that this technology will dramatically improve the ability of physicians to care for critically ill patients," Wilson said.

While Wilson provides the practicing medical component required in this research, Coté, who heads the optical biosensing laboratory within the Department of Biomedical Engineering at Texas A&M, provides expertise in modeling, post-processing and sensor optimization. Ericson and ORNL colleagues bring to the team vast knowledge in engineering, signal processing, system design, radio frequency telemetry design, and fabrication and micro-fabrication techniques.

Over the next year, Ericson will be working to miniaturize the sensors and associated electronics, which will enable surgeons to implant the sensor in the precise area of interest, either as a subdermal or deep-tissue implant. Ericson envisions the sensor remaining in the body, which would avoid additional surgery; however, that is an area that may require additional evaluation. Other efforts include biosensor optimization, design of low-power highly miniaturized signal processing and telemetry electronics, and development of encapsulation techniques.

Once they have made sufficient progress in these areas, the research team plans to conduct additional testing of the sensing techniques to demonstrate clinical significance. Finally, the procedure would be subject to clinical trials and Food and Drug Administration approval.

Assuming the technology passes all the tests, Ericson envisions this work leading to significant benefits.

"This research is based on several key developments in optics and micro-fabrication that have far-reaching implications for future directions in a multitude of clinically significant biomedical sensing systems," Ericson said. "Through these innovations, biomedical microsensors are poised to make major technology advances to help meet the critical needs of patients in hospitals, emergency care facilities and extended-care facilities."

The ability to prevent -- or at least detect -- circulation problems quickly could lead not only to fewer complications during surgery, but also could reduce the number of deaths attributable to those complications.

Although not a part of this project, Ericson sees this leading to several other photonics-based microsensors for making measurements in a number of areas. For example, this approach could be useful for measuring arterial blood gases, which are primary indicators of respiratory function, or serum lactate, which is a marker for the severity of tissue injury. Current methods require obtaining blood samples and then sending those samples to a lab for analysis.


Funding for this research is provided by DOE’s Office of Science. Initial funding began in 1997 through ORNL’s Laboratory Directed Research and Development program, also funded by DOE.

ORNL is a DOE multiprogram research facility managed by UT-Battelle.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov/news

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>