Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniature implantable sensor likely lifesaver for patients

25.11.2002


Using a tiny wireless sensor developed at Oak Ridge National Laboratory, doctors will know in minutes instead of hours if an organ is getting adequate blood flow after transplant or reconstructive surgery.



Conventional methods for assessing circulation involve invasive procedures or extensive laboratory testing. In some cases, by the time doctors realize there isn’t adequate blood flow to an organ or tissue, irreversible damage already has occurred.

"Our goal is to offer a technique that provides the physician with a very early indication of whether the surgery is successful," said Nance Ericson, who leads the effort from ORNL’s Engineering Science and Technology Division. Ericson is working with Mark Wilson, a surgeon at the University of Pittsburgh, and Gerard Coté of Texas A&M University.


The tiny implantable sensor – about the diameter of a quarter -- and micro-instrumentation being developed by Ericson would provide real-time information by transmitting data to a nearby receiver. Specifically, the unit employs optical sensors to assess tissue circulation. Preliminary tests using laboratory rats have provided encouraging results.

"Although we have more work to do, we are extremely optimistic that this technology will dramatically improve the ability of physicians to care for critically ill patients," Wilson said.

While Wilson provides the practicing medical component required in this research, Coté, who heads the optical biosensing laboratory within the Department of Biomedical Engineering at Texas A&M, provides expertise in modeling, post-processing and sensor optimization. Ericson and ORNL colleagues bring to the team vast knowledge in engineering, signal processing, system design, radio frequency telemetry design, and fabrication and micro-fabrication techniques.

Over the next year, Ericson will be working to miniaturize the sensors and associated electronics, which will enable surgeons to implant the sensor in the precise area of interest, either as a subdermal or deep-tissue implant. Ericson envisions the sensor remaining in the body, which would avoid additional surgery; however, that is an area that may require additional evaluation. Other efforts include biosensor optimization, design of low-power highly miniaturized signal processing and telemetry electronics, and development of encapsulation techniques.

Once they have made sufficient progress in these areas, the research team plans to conduct additional testing of the sensing techniques to demonstrate clinical significance. Finally, the procedure would be subject to clinical trials and Food and Drug Administration approval.

Assuming the technology passes all the tests, Ericson envisions this work leading to significant benefits.

"This research is based on several key developments in optics and micro-fabrication that have far-reaching implications for future directions in a multitude of clinically significant biomedical sensing systems," Ericson said. "Through these innovations, biomedical microsensors are poised to make major technology advances to help meet the critical needs of patients in hospitals, emergency care facilities and extended-care facilities."

The ability to prevent -- or at least detect -- circulation problems quickly could lead not only to fewer complications during surgery, but also could reduce the number of deaths attributable to those complications.

Although not a part of this project, Ericson sees this leading to several other photonics-based microsensors for making measurements in a number of areas. For example, this approach could be useful for measuring arterial blood gases, which are primary indicators of respiratory function, or serum lactate, which is a marker for the severity of tissue injury. Current methods require obtaining blood samples and then sending those samples to a lab for analysis.


Funding for this research is provided by DOE’s Office of Science. Initial funding began in 1997 through ORNL’s Laboratory Directed Research and Development program, also funded by DOE.

ORNL is a DOE multiprogram research facility managed by UT-Battelle.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov/news

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>