Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniature implantable sensor likely lifesaver for patients

25.11.2002


Using a tiny wireless sensor developed at Oak Ridge National Laboratory, doctors will know in minutes instead of hours if an organ is getting adequate blood flow after transplant or reconstructive surgery.



Conventional methods for assessing circulation involve invasive procedures or extensive laboratory testing. In some cases, by the time doctors realize there isn’t adequate blood flow to an organ or tissue, irreversible damage already has occurred.

"Our goal is to offer a technique that provides the physician with a very early indication of whether the surgery is successful," said Nance Ericson, who leads the effort from ORNL’s Engineering Science and Technology Division. Ericson is working with Mark Wilson, a surgeon at the University of Pittsburgh, and Gerard Coté of Texas A&M University.


The tiny implantable sensor – about the diameter of a quarter -- and micro-instrumentation being developed by Ericson would provide real-time information by transmitting data to a nearby receiver. Specifically, the unit employs optical sensors to assess tissue circulation. Preliminary tests using laboratory rats have provided encouraging results.

"Although we have more work to do, we are extremely optimistic that this technology will dramatically improve the ability of physicians to care for critically ill patients," Wilson said.

While Wilson provides the practicing medical component required in this research, Coté, who heads the optical biosensing laboratory within the Department of Biomedical Engineering at Texas A&M, provides expertise in modeling, post-processing and sensor optimization. Ericson and ORNL colleagues bring to the team vast knowledge in engineering, signal processing, system design, radio frequency telemetry design, and fabrication and micro-fabrication techniques.

Over the next year, Ericson will be working to miniaturize the sensors and associated electronics, which will enable surgeons to implant the sensor in the precise area of interest, either as a subdermal or deep-tissue implant. Ericson envisions the sensor remaining in the body, which would avoid additional surgery; however, that is an area that may require additional evaluation. Other efforts include biosensor optimization, design of low-power highly miniaturized signal processing and telemetry electronics, and development of encapsulation techniques.

Once they have made sufficient progress in these areas, the research team plans to conduct additional testing of the sensing techniques to demonstrate clinical significance. Finally, the procedure would be subject to clinical trials and Food and Drug Administration approval.

Assuming the technology passes all the tests, Ericson envisions this work leading to significant benefits.

"This research is based on several key developments in optics and micro-fabrication that have far-reaching implications for future directions in a multitude of clinically significant biomedical sensing systems," Ericson said. "Through these innovations, biomedical microsensors are poised to make major technology advances to help meet the critical needs of patients in hospitals, emergency care facilities and extended-care facilities."

The ability to prevent -- or at least detect -- circulation problems quickly could lead not only to fewer complications during surgery, but also could reduce the number of deaths attributable to those complications.

Although not a part of this project, Ericson sees this leading to several other photonics-based microsensors for making measurements in a number of areas. For example, this approach could be useful for measuring arterial blood gases, which are primary indicators of respiratory function, or serum lactate, which is a marker for the severity of tissue injury. Current methods require obtaining blood samples and then sending those samples to a lab for analysis.


Funding for this research is provided by DOE’s Office of Science. Initial funding began in 1997 through ORNL’s Laboratory Directed Research and Development program, also funded by DOE.

ORNL is a DOE multiprogram research facility managed by UT-Battelle.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov/news

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>