Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers show COX-2 inhibitors interfere with bone growth, healing

20.11.2002


Researchers at Stanford University Medical Center have found that selective COX-2 inhibitors - a class of medications widely prescribed for painful inflammatory conditions such as osteoarthritis and rheumatoid arthritis - interfere with the healing process after a bone fracture or cementless joint implant surgery.Their findings, published in the November issue of the Journal of Orthopaedic Research, suggest that patients who regularly take COX-2 inhibitors should switch to a different medication, such as acetaminophen or codeine derivatives, following a bone fracture or cementless implant. The study, conducted in rabbits, also suggests that physicians should consider changing prescribing patterns since many doctors commonly prescribe anti-inflammatory drugs including COX-2 inhibitors under the very circumstances in which the drugs should be avoided.



"It’s very common. You break a bone and go to the ER. The doctor sets it in a splint and prescribes one of these anti-inflammatory drugs (including COX-2 inhibitors) for pain," said Stuart Goodman, MD, professor of orthopaedic surgery at the Stanford School of Medicine and lead author of the study. "We now know that could actually delay healing."

The enzyme Cyclooxygenase-2, or COX-2, is produced by the body in response to injury or inflammation. COX-2 inhibitors, including anti-inflammatory medications such as rofecoxib (Vioxx), celecoxib (Celebrex) and others, block production of this enzyme. Goodman’s research shows that COX-2 inhibitors also impede the new bone growth that normally helps heal a fracture or stabilize a joint implant.


Belonging to a class of medications called non-steroidal anti-inflammatory drugs, COX-2 inhibitors were developed in the late 1990s as an alternative to another group of medications called nonspecific NSAIDS, which inhibit the production of COX-2 along with the enzyme Cyclooxygenase-1, or COX-1. Nonspecific NSAIDS, including aspirin, ibuprofen, naproxen and others, often cause stomach irritation and a tendency to bruise easily. COX-2 inhibitors largely avoid these side effects.

Researchers confirmed years ago that nonspecific NSAIDS inhibited bone growth and healing, but the Stanford study is among the first to show that COX-2 inhibitors have the same effect.

In the tibia bone of eight New Zealand white rabbits, Goodman and his team implanted a titanium device called a harvest chamber, which resembles a small screw. The device has a removable, hollow inner core that allows researchers to periodically extract the tissue growing inside. The growth of new bone into the chamber simulates healing of a fracture or joint implant.

Researchers gave the rabbits the following oral treatments for four weeks each: plain water; water with naproxen; plain water again; and sugar-coated pellets of rofecoxib (a COX-2 inhibitor). After each treatment, researchers removed the harvest chamber’s core and extracted the tissue growing inside. After preserving the tissue in liquid nitrogen, the researchers sectioned and processed it with special stains including monoclonal antibodies, allowing them to see how new bone had grown back.

Because a harvest chamber allows new tissue to be extracted multiple times as it grows back, the rabbits served as their own control groups (after consuming plain water) as well as the two experimental groups (after consuming naproxen and rofecoxib). The researchers found that while the tissue in the control group contained 24.8 percent and 29.9 percent new bone growth, the tissue harvested after the rabbits consumed naproxen and rofecoxib contained significantly less - 15.9 percent and 18.5 percent respectively. The difference in new bone growth associated with the two drugs was statistically insignificant; practically speaking, the COX-2 inhibitor impeded new bone growth as much as the nonspecific NSAID.

While acknowledging the limitations of animal research, Goodman said this study "has great applicability to humans, because the healing process is virtually the same" for rabbit and human bones. Goodman is having his own patients avoid COX-2 inhibitors for six weeks after a fracture or joint implant, and he recommends other physicians do the same. "This research has very practical applications."

Goodman said his recommended six-week "time-out" period is an educated guess, because his study didn’t address how long the bone-growth-suppressing effects of COX-2 inhibitors last. To answer that question, Goodman and his colleagues recently began a follow-up study.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.


Sara Selis | EurekAlert!
Further information:
http://med-www.stanford.edu/MedCenter/MedSchool/
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

nachricht Alzheimer’s: Cellular Mechanism Provides Explanation Model for Declining Memory Performance
21.09.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>