Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inaccurate arsenic test kits jeopardize water safety in Bangladesh and India

19.11.2002


Thousands in southern Asia could be drinking arsenic-contaminated water from wells that are falsely labeled safe, while precious good water sits untapped in wells that are wrongly marked unsafe — a dire disparity for countries where water can be more valuable than gold.



A new study of wells in Bangladesh and West Bengal, India, suggests the arsenic test kits used by field workers are frequently inaccurate, producing scores of incorrectly labeled wells. The findings were published this month on the Web site of Environmental Science & Technology, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society. The print version of the paper is scheduled for the Dec. 15 edition of the journal.

Researchers analyzed 2,866 water samples from wells that were previously labeled by field workers. They found that a large percentage of the wells were labeled erroneously.


Shallow wells, known as tubewells, are commonly used in Bangladesh and India to avoid the region’s surface water, much of which contains bacteria that can cause waterborne diseases like cholera. Beginning in the 1970s, international aid organizations dug millions of tubewells, and the program was basically successful in providing bacteria-free water. But officials soon found that the tubewells were reaching groundwater containing high levels of arsenic.

Arsenic is a slow poison; studies have linked long-term exposure to several types of cancer, according to the U.S. Environmental Protection Agency. The World Health Organization advocates a maximum arsenic level in water of 10 micrograms per liter — the standard currently used by the EPA — but many developing countries still use a standard of 50 micrograms per liter.

By 1993, the Bangladesh Department of Public Health Engineering had reported widespread signs of arsenic poisoning and blamed tubewell water. WHO called it the largest mass poisoning of a population in history. Similar problems have recently surfaced in other countries in the region, including India, Vietnam, Cambodia, Nepal and Myanmar (formerly Burma).

In 1997, the World Bank, WHO, UNICEF and other international organizations undertook a massive project to test every tubewell in Bangladesh and the surrounding area using field kits. Many wells were labeled with paint to indicate their viability: green for safe water (containing under 50 micrograms per liter of arsenic) and red for unsafe water.

"We have been surveying in arsenic-affected areas of Bangladesh since 1996," says Dipankar Chakraborti, Ph.D., head of the School of Environmental Studies at Jadavpur University in Calcutta, India, and lead author of the paper. He and his colleagues often heard stories from villagers about mislabeled wells. One villager reportedly brought two glasses of water for testing to field workers who had labeled the wells; one glass was declared safe by the workers and the other was declared unsafe. The villagers then proceeded to assault the workers, Chakraborti says. Both samples had apparently been taken from the same well.

The researchers began testing tubewells themselves with a technique called flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) — a fast and sensitive method performed in a laboratory setting. They found random errors in the labeling of tubewells, which led them to begin the systematic study reported in the current paper.

They found that nearly 50 percent of the wells painted red by field workers actually contained safe drinking water, according to their lab technique. Only 7.5 percent of the green wells turned out to be unsafe.

The point, the researchers emphasize, is that the field kits appear to be random and qualitative — not appropriate for large-scale testing initiatives with such important health, economic and environmental impacts.

The field kits are difficult to read with precision and often are not suitably accurate for this type of measurement — the majority of the analyses in Bangladesh were done before 2000, using a test kit with a minimum detection level of 100 micrograms per liter.

Chakraborti recommends using the FI-HG-AAS analysis because it not only provides more accurate readings, but there are also environmental impacts from the field kits that are not a concern in the lab. The field kits require relatively large quantities of toxic chemicals that must be disposed of, he says, but the lab technique uses a "micro-assay" technique with much less need for chemicals.

The lab technique can also be less expensive than the field kit method, Chakraborti says. "Cost is an important consideration but [it] requires comparison with the even higher cost of falsely labeling a well as unsafe," the researchers write. "Given the scarcity of uncontaminated water the mislabeling of 50 [percent] of safe wells has a major socioeconomic impact."

The School of Environmental Studies is a self-funded institute within Jadavpur University, which is operated solely on money earned from selling its expertise.

Beverly Hassell | EurekAlert!
Further information:
http://www.acs.org/
http://pubs.acs.org/estnews

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>