Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sertoli cell transfer restores sperm production in infertile mice

18.11.2002


Scientists at the University of Pennsylvania School of Veterinary Medicine have successfully transplanted specialized cells that are critical to sperm development in mice, restoring sperm production in once-infertile animals.

The research, reported on the Web site of the journal Biology of Reproduction, may give scientists a better understanding of how Sertoli cells -- which surround spermatogenic stem cells -- nourish sperm production and the survival of stem cells.

"Spermatogenesis is a highly organized process, requiring just the right environment, or ’niche,’ around the germ line stem cells," said Ralph L. Brinster, professor of reproductive physiology at Penn. "The Sertoli cells are essential to this environment, and it appears that by replacing them, we can essentially reconstruct the niche in which sperm development takes place."



Much of the volume of a mammalian testis consists of tightly coiled seminiferous tubules that hold mature sperm. Sperm development also occurs within these tubules, which are home to spermatogenic stem cells, the seeds from which spermatogenesis arises. Seminiferous tubules are lined with Sertoli cells, which are thought to nurture sperm cells as they develop and facilitate their eventual passage out of the testis.

Brinster and colleagues worked with Steel mutant mice, which are congenitally infertile due to a Sertoli cell defect. Before inserting healthy Sertoli cells, the researchers treated the mice’s testes with busulfan and cadmium to remove any defective germ cells and Sertoli cells. The seminiferous tubules remained, likely providing the structural support needed to completely reconstitute spermatogenesis from donor cells.

The Brinster group’s technique for transplanting Sertoli cells will likely allow scientists to study stem cells’ specialized environment in a way that has not been possible before. Currently, the best-studied stem cells are those that generate blood cells, even though these cells, which reside in bone marrow, are relatively inaccessible to researchers.

"I believe Dr. Brinster’s new results have catapulted the spermatogenic stem cell system into a position of maximum experimental flexibility among all other stem cell systems in the body," said John R. McCarrey, professor of cell and molecular biology at the University of Texas at San Antonio, who was not involved in this work. "This may lead to significant new insight into the manner in which the spermatogenic stem cell works in particular as well as to additional information about how all stem cells work in general."

Brinster’s work could eventually prove useful in the treatment of certain types of infertility in men, although complete spermatogenesis was established in only 1.5 to 3 percent of seminiferous tubules in this experiment.

"Male infertility can be caused either by defective germ cells or by a testicular environment that fails to promote proper spermatogenesis," Brinster said. "While several assisted reproductive technologies, such as in vitro fertilization or intracytoplasmic sperm injection, are now available for patients with low sperm counts, infertile patients with Sertoli cell defects have limited options."

The technique developed by Brinster and his colleagues may provide a new way of replacing defective Sertoli cells with healthy ones, which may initiate normal spermatogenesis in some infertile patients.


Brinster was joined in the research by Takashi Shinohara, now at Kyoto University, and Kyle E. Orwig and Mary R. Avarbock in Penn’s School of Veterinary Medicine. The work was funded by the Japan Society for Promotion of Science, the National Institute of Child Health and Human Development, the Commonwealth and General Assembly of Pennsylvania and the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation.


Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>