Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sertoli cell transfer restores sperm production in infertile mice

18.11.2002


Scientists at the University of Pennsylvania School of Veterinary Medicine have successfully transplanted specialized cells that are critical to sperm development in mice, restoring sperm production in once-infertile animals.

The research, reported on the Web site of the journal Biology of Reproduction, may give scientists a better understanding of how Sertoli cells -- which surround spermatogenic stem cells -- nourish sperm production and the survival of stem cells.

"Spermatogenesis is a highly organized process, requiring just the right environment, or ’niche,’ around the germ line stem cells," said Ralph L. Brinster, professor of reproductive physiology at Penn. "The Sertoli cells are essential to this environment, and it appears that by replacing them, we can essentially reconstruct the niche in which sperm development takes place."



Much of the volume of a mammalian testis consists of tightly coiled seminiferous tubules that hold mature sperm. Sperm development also occurs within these tubules, which are home to spermatogenic stem cells, the seeds from which spermatogenesis arises. Seminiferous tubules are lined with Sertoli cells, which are thought to nurture sperm cells as they develop and facilitate their eventual passage out of the testis.

Brinster and colleagues worked with Steel mutant mice, which are congenitally infertile due to a Sertoli cell defect. Before inserting healthy Sertoli cells, the researchers treated the mice’s testes with busulfan and cadmium to remove any defective germ cells and Sertoli cells. The seminiferous tubules remained, likely providing the structural support needed to completely reconstitute spermatogenesis from donor cells.

The Brinster group’s technique for transplanting Sertoli cells will likely allow scientists to study stem cells’ specialized environment in a way that has not been possible before. Currently, the best-studied stem cells are those that generate blood cells, even though these cells, which reside in bone marrow, are relatively inaccessible to researchers.

"I believe Dr. Brinster’s new results have catapulted the spermatogenic stem cell system into a position of maximum experimental flexibility among all other stem cell systems in the body," said John R. McCarrey, professor of cell and molecular biology at the University of Texas at San Antonio, who was not involved in this work. "This may lead to significant new insight into the manner in which the spermatogenic stem cell works in particular as well as to additional information about how all stem cells work in general."

Brinster’s work could eventually prove useful in the treatment of certain types of infertility in men, although complete spermatogenesis was established in only 1.5 to 3 percent of seminiferous tubules in this experiment.

"Male infertility can be caused either by defective germ cells or by a testicular environment that fails to promote proper spermatogenesis," Brinster said. "While several assisted reproductive technologies, such as in vitro fertilization or intracytoplasmic sperm injection, are now available for patients with low sperm counts, infertile patients with Sertoli cell defects have limited options."

The technique developed by Brinster and his colleagues may provide a new way of replacing defective Sertoli cells with healthy ones, which may initiate normal spermatogenesis in some infertile patients.


Brinster was joined in the research by Takashi Shinohara, now at Kyoto University, and Kyle E. Orwig and Mary R. Avarbock in Penn’s School of Veterinary Medicine. The work was funded by the Japan Society for Promotion of Science, the National Institute of Child Health and Human Development, the Commonwealth and General Assembly of Pennsylvania and the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation.


Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>