Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sertoli cell transfer restores sperm production in infertile mice

18.11.2002


Scientists at the University of Pennsylvania School of Veterinary Medicine have successfully transplanted specialized cells that are critical to sperm development in mice, restoring sperm production in once-infertile animals.

The research, reported on the Web site of the journal Biology of Reproduction, may give scientists a better understanding of how Sertoli cells -- which surround spermatogenic stem cells -- nourish sperm production and the survival of stem cells.

"Spermatogenesis is a highly organized process, requiring just the right environment, or ’niche,’ around the germ line stem cells," said Ralph L. Brinster, professor of reproductive physiology at Penn. "The Sertoli cells are essential to this environment, and it appears that by replacing them, we can essentially reconstruct the niche in which sperm development takes place."



Much of the volume of a mammalian testis consists of tightly coiled seminiferous tubules that hold mature sperm. Sperm development also occurs within these tubules, which are home to spermatogenic stem cells, the seeds from which spermatogenesis arises. Seminiferous tubules are lined with Sertoli cells, which are thought to nurture sperm cells as they develop and facilitate their eventual passage out of the testis.

Brinster and colleagues worked with Steel mutant mice, which are congenitally infertile due to a Sertoli cell defect. Before inserting healthy Sertoli cells, the researchers treated the mice’s testes with busulfan and cadmium to remove any defective germ cells and Sertoli cells. The seminiferous tubules remained, likely providing the structural support needed to completely reconstitute spermatogenesis from donor cells.

The Brinster group’s technique for transplanting Sertoli cells will likely allow scientists to study stem cells’ specialized environment in a way that has not been possible before. Currently, the best-studied stem cells are those that generate blood cells, even though these cells, which reside in bone marrow, are relatively inaccessible to researchers.

"I believe Dr. Brinster’s new results have catapulted the spermatogenic stem cell system into a position of maximum experimental flexibility among all other stem cell systems in the body," said John R. McCarrey, professor of cell and molecular biology at the University of Texas at San Antonio, who was not involved in this work. "This may lead to significant new insight into the manner in which the spermatogenic stem cell works in particular as well as to additional information about how all stem cells work in general."

Brinster’s work could eventually prove useful in the treatment of certain types of infertility in men, although complete spermatogenesis was established in only 1.5 to 3 percent of seminiferous tubules in this experiment.

"Male infertility can be caused either by defective germ cells or by a testicular environment that fails to promote proper spermatogenesis," Brinster said. "While several assisted reproductive technologies, such as in vitro fertilization or intracytoplasmic sperm injection, are now available for patients with low sperm counts, infertile patients with Sertoli cell defects have limited options."

The technique developed by Brinster and his colleagues may provide a new way of replacing defective Sertoli cells with healthy ones, which may initiate normal spermatogenesis in some infertile patients.


Brinster was joined in the research by Takashi Shinohara, now at Kyoto University, and Kyle E. Orwig and Mary R. Avarbock in Penn’s School of Veterinary Medicine. The work was funded by the Japan Society for Promotion of Science, the National Institute of Child Health and Human Development, the Commonwealth and General Assembly of Pennsylvania and the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation.


Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>