Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engineered blood vessels prove durable and clot resistant


American Heart Association meeting report

Researchers have built mechanically sound blood vessels out of tissue from human skin cells, according to a study reported today at the American Heart Association’s Scientific Sessions 2002. The technique involves tissue engineering, an emerging science that takes cells from the body, manipulates them in the laboratory to create functional tissue, and puts the new tissue back into the patient.

The goal is to produce healthy, functioning blood vessels built exclusively from a person’s own cells, so the body’s immune system won’t reject the new tissue. Such vessels would be important in heart and leg bypass operations and for vessels called arteriovenous shunts used for dialysis patients.

The scientists reported that tissue-engineered blood vessels didn’t burst or develop blood clots in laboratory tests and short-term animal experiments.

"The study’s most important findings were: First, the technology works from a commercial perspective, meaning we can build mechanically sound vessels for a wide array of patients using the exact same protocol," says Todd McAllister, Ph.D., president and chief executive officer of Cytograft Tissue Engineering in Novato, Calif., which developed the vessel-building technique.

"Second, we demonstrated that thrombogenesis (the formation of blood clots) does not appear to be a problem in the short term – up to 14 days. Short-term blood clots are the biggest challenge facing most synthetic materials, whether they are used for blood vessels, new heart valves, or other vascular prostheses. We expect to begin this research in humans within 18 months."

In the study reported today, researchers took fibroblast cells from 11 patients (ages 54 to 84) with advanced cardiovascular disease who had coronary artery bypass operations at Stanford University. Fibroblasts form the outer wall of blood vessels. The researchers used endothelial cells from animals to make the inner lining of the vessels.

Typically, tissue engineering involves growing cells on a synthetic scaffold to create a specific shape, such as a piece of bone for use in facial reconstruction surgery. These scaffolds have traditionally been necessary to provide mechanical strength to the new tissue.

However, Cytograft’s chief scientific officer Nicolas L’Heureux, Ph.D., has developed a different approach called sheet-based tissue engineering.

"We can build a tissue that is only a few hundred microns thick, the diameter of several human hairs, that is robust enough that we don’t need synthetic materials or scaffolding to support it," L’Heureux says. The cell sheets are removed from the dish and wrapped around a temporary stainless steel cylinder 4 millimeters (0.15 inch) in diameter. The vessel then goes through a maturation phase where the separate layers fuse into a homogeneous tissue.

After removing the tissue from the steel cylinder, endothelial cells are seeded to the inside to create the inner lining of the blood vessel. Finally, the vessels are exposed to increasing rates of fluid flow and pressure to precondition them for implantation.

The engineered vessels were implanted as a femoral (leg) artery graft in study animals. The vessels were then removed at three, seven and 14 days after implantation. All but two of the vessels survived past day three and seemed mechanically stable without forming blood clots.

One question they had going into this study is whether the same chemicals and techniques that could successfully engineer tissue cells from one human into a new blood vessel would also work on cells from other humans.

"It was quite conceivable that differences from patient to patient would be so significant that the same recipe for making blood vessels could not be used in all cases," McAllister says. "We had no idea whether we could do this across a wide range of age- and risk-matched patients."

With early evidence showing the vessels’ reliability and clot resistance, researchers plan to implant tissue-engineered blood vessels in humans in 12 to 18 months, he says. The first patients will be those with peripheral vascular disease, the severe blockage of a leg artery that can lead to amputation.

Co-authors are Mark Koransky, M.D.; Nathalie Dusserre, Ph.D.; Gerhardt Konig, B.S.; and Robert Robbins, M.D. Abstract 1864

Carole Bullock | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>