Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered blood vessels prove durable and clot resistant

18.11.2002


American Heart Association meeting report



Researchers have built mechanically sound blood vessels out of tissue from human skin cells, according to a study reported today at the American Heart Association’s Scientific Sessions 2002. The technique involves tissue engineering, an emerging science that takes cells from the body, manipulates them in the laboratory to create functional tissue, and puts the new tissue back into the patient.

The goal is to produce healthy, functioning blood vessels built exclusively from a person’s own cells, so the body’s immune system won’t reject the new tissue. Such vessels would be important in heart and leg bypass operations and for vessels called arteriovenous shunts used for dialysis patients.


The scientists reported that tissue-engineered blood vessels didn’t burst or develop blood clots in laboratory tests and short-term animal experiments.

"The study’s most important findings were: First, the technology works from a commercial perspective, meaning we can build mechanically sound vessels for a wide array of patients using the exact same protocol," says Todd McAllister, Ph.D., president and chief executive officer of Cytograft Tissue Engineering in Novato, Calif., which developed the vessel-building technique.

"Second, we demonstrated that thrombogenesis (the formation of blood clots) does not appear to be a problem in the short term – up to 14 days. Short-term blood clots are the biggest challenge facing most synthetic materials, whether they are used for blood vessels, new heart valves, or other vascular prostheses. We expect to begin this research in humans within 18 months."

In the study reported today, researchers took fibroblast cells from 11 patients (ages 54 to 84) with advanced cardiovascular disease who had coronary artery bypass operations at Stanford University. Fibroblasts form the outer wall of blood vessels. The researchers used endothelial cells from animals to make the inner lining of the vessels.

Typically, tissue engineering involves growing cells on a synthetic scaffold to create a specific shape, such as a piece of bone for use in facial reconstruction surgery. These scaffolds have traditionally been necessary to provide mechanical strength to the new tissue.

However, Cytograft’s chief scientific officer Nicolas L’Heureux, Ph.D., has developed a different approach called sheet-based tissue engineering.

"We can build a tissue that is only a few hundred microns thick, the diameter of several human hairs, that is robust enough that we don’t need synthetic materials or scaffolding to support it," L’Heureux says. The cell sheets are removed from the dish and wrapped around a temporary stainless steel cylinder 4 millimeters (0.15 inch) in diameter. The vessel then goes through a maturation phase where the separate layers fuse into a homogeneous tissue.

After removing the tissue from the steel cylinder, endothelial cells are seeded to the inside to create the inner lining of the blood vessel. Finally, the vessels are exposed to increasing rates of fluid flow and pressure to precondition them for implantation.

The engineered vessels were implanted as a femoral (leg) artery graft in study animals. The vessels were then removed at three, seven and 14 days after implantation. All but two of the vessels survived past day three and seemed mechanically stable without forming blood clots.

One question they had going into this study is whether the same chemicals and techniques that could successfully engineer tissue cells from one human into a new blood vessel would also work on cells from other humans.

"It was quite conceivable that differences from patient to patient would be so significant that the same recipe for making blood vessels could not be used in all cases," McAllister says. "We had no idea whether we could do this across a wide range of age- and risk-matched patients."

With early evidence showing the vessels’ reliability and clot resistance, researchers plan to implant tissue-engineered blood vessels in humans in 12 to 18 months, he says. The first patients will be those with peripheral vascular disease, the severe blockage of a leg artery that can lead to amputation.


Co-authors are Mark Koransky, M.D.; Nathalie Dusserre, Ph.D.; Gerhardt Konig, B.S.; and Robert Robbins, M.D. Abstract 1864

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>