Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue-engineered cells transmit electrical signals in animal hearts

18.11.2002


American Heart Association meeting report



Preliminary findings of a study in rats suggests that a person’s own cells might one day replace artificial pacemakers, researchers reported today at the American Heart Association’s Scientific Sessions 2002.

Studies conducted at Children’s Hospital Boston tested the ability of immature skeletal muscle cells to interconnect with heart cells and spread the electrical impulses that keep the heart beating properly.


"The cells have survived in rats for more than a year and they appear to have made connections with cardiac cells," says Douglas B. Cowan, Ph.D., a cell biologist who led the study. "The electrical pathway developed within 10 weeks of implantation.

"Ultimately – maybe a decade down the road – we may be able to use such cell-based technologies in humans to free them from cardiac pacemaker devices," says Cowan, also an assistant professor of anesthesia at Harvard University Medical School in Boston.

Heart contraction starts with an electrical signal that begins in the atrium, a tiny area of the heart’s upper-right chamber. The signal then moves to the other chambers. Damage to the electrical pathway between the atrium and ventricles (the lower chambers) can result in complete heart block, a potentially fatal condition that can only be treated by implanting a cardiac pacemaker.

"We have gathered preliminary evidence that immature skeletal muscle cells can establish a pathway to transmit electrical signals from the heart’s upper right chamber to its lower right chamber," he says.

Heart block is present in about one in 22,000 births, Cowan says. It also can result from open-heart surgery in children, or develop later in life. It’s particularly difficult to treat in infants and children, he says.

"You can’t feed pacemaker wires through the blood vessels of some pediatric patients because the vessels are too small," he explains.

The wire must be coiled inside the chest so it can expand as the child grows, and the pacemakers or their wires often fail, which results in further surgery.

"These patients usually face several repair or replacement operations over the course of their lives," Cowan says.

Researchers extracted small amounts of skeletal muscle from the rats to obtain myoblasts, immature cells destined to become muscle. Unlike mature skeletal muscle cells, myoblasts can make the same proteins that heart muscle cells use to connect with one another to transmit electrical signals. The team used engineered tissue containing about 70 percent myoblasts and 30 percent other cell types, using the connective tissue called collagen. Tissue engineering involves removing cells from the body, manipulating them in the laboratory to create a specific tissue, such as a piece of bone for reconstructive surgery, and implanting it into the patient.

The team created three-dimensional strips of tissue by growing the cell mixtures in small tubes cut in half lengthwise. They then surgically implanted the strips in rat hearts.

"We used a general shape and cells from other animals, but the idea is that eventually we could custom grow tissue for a person using his or her own cells," Cowan notes. By using the patients’ own cells, clinicians may avoid the risk that the immune system will attack the implanted cells, he says.

"The biggest theoretical weakness in this idea was that the proteins required to connect one heart cell to another – called connexins – are usually not expressed in mature skeletal muscle," Cowan says. "Connexins are very important to conduction in the heart. They modify the speed and direction of the electrical signals, and greatly influence how they flow from cell to cell."

"The other question was whether these cells would actually connect with cardiac cells to form an electrical pathway," he says.

Today, the research team reported that the pathway developed and the connexins were present and functioning in the implanted tissue more than one year later.

"We are now using much more sophisticated measurements to confirm this phenomenon and everything at this point shows that the electrical pathway is there," Cowan says.

A lot of work remains before researchers can test the cell-implant technique in humans, Cowan says. "We need rigorous, state-of-the-art experiments to confirm that the tissue is functioning and that the same thing can happen in larger animals."


Co-authors are Yeong-Hoon Choi, M.D.; Christof Stamm, M.D.; Mara Jones, M.S.; Francis X. McGowan, Jr., M.D.; and Pedro J. del Nido, M.D.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>