Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue-engineered cells transmit electrical signals in animal hearts

18.11.2002


American Heart Association meeting report



Preliminary findings of a study in rats suggests that a person’s own cells might one day replace artificial pacemakers, researchers reported today at the American Heart Association’s Scientific Sessions 2002.

Studies conducted at Children’s Hospital Boston tested the ability of immature skeletal muscle cells to interconnect with heart cells and spread the electrical impulses that keep the heart beating properly.


"The cells have survived in rats for more than a year and they appear to have made connections with cardiac cells," says Douglas B. Cowan, Ph.D., a cell biologist who led the study. "The electrical pathway developed within 10 weeks of implantation.

"Ultimately – maybe a decade down the road – we may be able to use such cell-based technologies in humans to free them from cardiac pacemaker devices," says Cowan, also an assistant professor of anesthesia at Harvard University Medical School in Boston.

Heart contraction starts with an electrical signal that begins in the atrium, a tiny area of the heart’s upper-right chamber. The signal then moves to the other chambers. Damage to the electrical pathway between the atrium and ventricles (the lower chambers) can result in complete heart block, a potentially fatal condition that can only be treated by implanting a cardiac pacemaker.

"We have gathered preliminary evidence that immature skeletal muscle cells can establish a pathway to transmit electrical signals from the heart’s upper right chamber to its lower right chamber," he says.

Heart block is present in about one in 22,000 births, Cowan says. It also can result from open-heart surgery in children, or develop later in life. It’s particularly difficult to treat in infants and children, he says.

"You can’t feed pacemaker wires through the blood vessels of some pediatric patients because the vessels are too small," he explains.

The wire must be coiled inside the chest so it can expand as the child grows, and the pacemakers or their wires often fail, which results in further surgery.

"These patients usually face several repair or replacement operations over the course of their lives," Cowan says.

Researchers extracted small amounts of skeletal muscle from the rats to obtain myoblasts, immature cells destined to become muscle. Unlike mature skeletal muscle cells, myoblasts can make the same proteins that heart muscle cells use to connect with one another to transmit electrical signals. The team used engineered tissue containing about 70 percent myoblasts and 30 percent other cell types, using the connective tissue called collagen. Tissue engineering involves removing cells from the body, manipulating them in the laboratory to create a specific tissue, such as a piece of bone for reconstructive surgery, and implanting it into the patient.

The team created three-dimensional strips of tissue by growing the cell mixtures in small tubes cut in half lengthwise. They then surgically implanted the strips in rat hearts.

"We used a general shape and cells from other animals, but the idea is that eventually we could custom grow tissue for a person using his or her own cells," Cowan notes. By using the patients’ own cells, clinicians may avoid the risk that the immune system will attack the implanted cells, he says.

"The biggest theoretical weakness in this idea was that the proteins required to connect one heart cell to another – called connexins – are usually not expressed in mature skeletal muscle," Cowan says. "Connexins are very important to conduction in the heart. They modify the speed and direction of the electrical signals, and greatly influence how they flow from cell to cell."

"The other question was whether these cells would actually connect with cardiac cells to form an electrical pathway," he says.

Today, the research team reported that the pathway developed and the connexins were present and functioning in the implanted tissue more than one year later.

"We are now using much more sophisticated measurements to confirm this phenomenon and everything at this point shows that the electrical pathway is there," Cowan says.

A lot of work remains before researchers can test the cell-implant technique in humans, Cowan says. "We need rigorous, state-of-the-art experiments to confirm that the tissue is functioning and that the same thing can happen in larger animals."


Co-authors are Yeong-Hoon Choi, M.D.; Christof Stamm, M.D.; Mara Jones, M.S.; Francis X. McGowan, Jr., M.D.; and Pedro J. del Nido, M.D.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>